William P Mcdermott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5094891/publications.pdf

Version: 2024-02-01

20 papers

1,655 citations

15 h-index 752256 20 g-index

24 all docs

24 docs citations

times ranked

24

1568 citing authors

#	Article	IF	CITATIONS
1	Inâ€situ IR Spectroscopy Study of Reactions of C3 Oxygenates on Heteroatom (Sn, Mo, and W) doped BEA Zeolites and the Effect of Coâ€adsorbed Water. ChemCatChem, 2021, 13, 445-458.	1.8	6
2	Highly Selective Carbonâ€Supported Boron for Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3611-3618.	1.8	17
3	Controlled Grafting Synthesis of Silica-Supported Boron for Oxidative Dehydrogenation Catalysis. Journal of Physical Chemistry C, 2021, 125, 12636-12649.	1.5	19
4	Selective Oxidative Cracking of <i>nâ€</i> Butane to Light Olefins over Hexagonal Boron Nitride with Limited Formation of CO _{<i>x</i> ChemSusChem, 2020, 13, 152-158.}	3.6	28
5	Structure Determination of Boron-Based Oxidative Dehydrogenation Heterogeneous Catalysts With Ultrahigh Field 35.2 T ¹¹ B Solid-State NMR Spectroscopy. ACS Catalysis, 2020, 10, 13852-13866.	5.5	39
6	Recent Advances in the Understanding of Boron-Containing Catalysts for the Selective Oxidation of Alkanes to Olefins. Topics in Catalysis, 2020, 63, 1700-1707.	1.3	12
7	Why Boron Nitride is such a Selective Catalyst for the Oxidative Dehydrogenation of Propane. Angewandte Chemie - International Edition, 2020, 59, 16527-16535.	7.2	75
8	Why Boron Nitride is such a Selective Catalyst for the Oxidative Dehydrogenation of Propane. Angewandte Chemie, 2020, 132, 16670-16678.	1.6	7
9	Bâ€MWW Zeolite: The Case Against Singleâ€Site Catalysis. Angewandte Chemie, 2020, 132, 6608-6612.	1.6	12
10	Bâ€MWW Zeolite: The Case Against Singleâ€Site Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6546-6550.	7.2	54
11	Synthesis and Characterization of Silica-Supported Boron Oxide Catalysts for the Oxidative Dehydrogenation of Propane. Journal of Physical Chemistry C, 2019, 123, 27000-27011.	1.5	57
12	Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions. Journal of the American Chemical Society, 2019, 141, 182-190.	6.6	135
13	Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts. Chemical Reviews, 2018, 118, 2769-2815.	23.0	237
14	Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation. Accounts of Chemical Research, 2018, 51, 2556-2564.	7.6	95
15	Selective Oxidation of <i>n</i> à€Butane and Isobutane Catalyzed by Boron Nitride. ChemCatChem, 2017, 9, 2118-2127.	1.8	84
16	Influence of Tin Loading and Pore Size of Sn/MCM-41 Catalysts on the Synthesis of Nopol. Industrial & Loading Chemistry Research, 2017, 56, 6590-6598.	1.8	15
17	Boron and Boron-Containing Catalysts for the Oxidative Dehydrogenation of Propane. ChemCatChem, 2017, 9, 3622-3622.	1.8	82
18	Boron and Boronâ€Containing Catalysts for the Oxidative Dehydrogenation of Propane. ChemCatChem, 2017, 9, 3623-3626.	1.8	105

#	Article	IF	CITATIONS
19	Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science, 2016, 354, 1570-1573.	6.0	522
20	Mechanistic Study on the Lewis Acid Catalyzed Synthesis of 1,3-Butadiene over Ta-BEA Using Modulated Operando DRIFTS-MS. ACS Catalysis, 2016, 6, 6823-6832.	5. 5	54