
Laurent Bartholin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5094489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers, 2022, 14, 2184.	3.7	3
2	Competition for Active TGFÎ ² Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. Immunity, 2021, 54, 84-98.e5.	14.3	68
3	Transforming growth factor-Î ² -regulated mTOR activity preserves cellular metabolism to maintain long-term TAcell responses in chronic infection. Immunity, 2021, 54, 1698-1714.e5.	14.3	82
4	Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nature Immunology, 2021, 22, 1140-1151.	14.5	96
5	Generation of an Fsp1 (fibroblastâ€specific protein 1)â€Flpo transgenic mouse strain. Genesis, 2020, 58, e23359.	1.6	4
6	Generation of a conditional Flpo/FRT mouse model expressing constitutively active TGFβ in fibroblasts. Scientific Reports, 2020, 10, 3880.	3.3	1
7	Keratinocyte-Mediated Activation of the Cytokine TGF-Î ² Maintains Skin Recirculating Memory CD8+ T Cells. Immunity, 2019, 50, 1249-1261.e5.	14.3	69
8	Schwann cells support oncogenic potential of pancreatic cancer cells through TGFÎ ² signaling. Cell Death and Disease, 2019, 10, 886.	6.3	40
9	Glandular defects in the mouse uterus with sustained activation of TGF-beta signaling is associated with altered differentiation of endometrial stromal cells and formation of stromal compartment. PLoS ONE, 2018, 13, e0209417.	2.5	15
10	Prognostic stratification of resected pancreatic ductal adenocarcinoma: Past, present, and future. Digestive and Liver Disease, 2018, 50, 979-990.	0.9	22
11	A novel mouse model of testicular granulosa cell tumors. Molecular Human Reproduction, 2018, 24, 343-356.	2.8	8
12	TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
13	Immune therapies in pancreatic ductal adenocarcinoma: Where are we now?. World Journal of Gastroenterology, 2018, 24, 2137-2151.	3.3	99
14	Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRAS G12D -driven Pancreatic Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 263-282.	4.5	46
15	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	14.5	504
16	Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling. Reproductive Biology and Endocrinology, 2017, 15, 94.	3.3	7
17	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
18	TGF-Î ² inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19,	3.6	453

LAURENT BARTHOLIN

#	Article	IF	CITATIONS
19	Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nature Immunology, 2016, 17, 414-421.	14.5	190
20	TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death and Differentiation, 2016, 23, 1358-1370.	11.2	38
21	Analysis of Epithelial–Mesenchymal Transition Induced by Transforming Growth Factor β. Methods in Molecular Biology, 2016, 1344, 147-181.	0.9	23
22	Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget, 2016, 7, 32100-32112.	1.8	59
23	Constitutive Activation of Transforming Growth Factor Beta Receptor 1 in the Mouse Uterus Impairs Uterine Morphology and Function1. Biology of Reproduction, 2015, 92, 34.	2.7	34
24	Tenascin-X: beyond the architectural function. Cell Adhesion and Migration, 2015, 9, 154-165.	2.7	79
25	TIF1 ^{ĵ3} Suppresses Tumor Progression by Regulating Mitotic Checkpoints and Chromosomal Stability. Cancer Research, 2015, 75, 4335-4350.	0.9	27
26	Genetic inactivation of <i>Nupr1</i> acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut, 2014, 63, 984-995.	12.1	32
27	Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β. Journal of Cell Biology, 2014, 205, 409-428.	5.2	80
28	TGF-Â: Duality of Function Between Tumor Prevention and Carcinogenesis. Journal of the National Cancer Institute, 2014, 106, djt369-djt369.	6.3	413
29	The conditional expression of KRASG12D in mouse pancreas induces disorganization of endocrine islets prior the onset of ductal pre-cancerous lesions. Pancreatology, 2013, 13, 191-195.	1.1	4
30	Generation of a conditional mouse model to target <i>Acvr1b</i> disruption in adult tissues. Genesis, 2013, 51, 120-127.	1.6	12
31	Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis. Cell Death and Disease, 2013, 4, e855-e855.	6.3	22
32	Isolation and Culture of Mouse Primary Pancreatic Acinar Cells. Journal of Visualized Experiments, 2013, , .	0.3	49
33	TGF-l ² as Tumor Suppressor: In Vitro Mechanistic Aspects of Growth Inhibition. , 2013, , 113-138.		1
34	TGF- \hat{l}^2 as Tumor Suppressor: Lessons from Mouse Models. , 2013, , 139-168.		2
35	The human <i>NUPR1/P8</i> gene is transcriptionally activated by transforming growth factor β via the SMAD signalling pathway. Biochemical Journal, 2012, 445, 285-293.	3.7	29
36	Tif1γ Suppresses Murine Pancreatic Tumoral Transformation by a Smad4-Independent Pathway. American Journal of Pathology, 2012, 180, 2214-2221.	3.8	32

Laurent Bartholin

#	Article	IF	CITATIONS
37	Premature Senescence and Increased TGF \hat{I}^2 Signaling in the Absence of Tgif1. PLoS ONE, 2012, 7, e35460.	2.5	24
38	Homotypic cell cannibalism, a cellâ€death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Molecular Medicine, 2012, 4, 964-979.	6.9	67
39	A rapid strategy to detect the recombined allele in LSLâ€ᠯβRl ^{CA} transgenic mice. Genesis, 2010, 48, 559-562.	1.6	12
40	iNKT cell development is orchestrated by different branches of TGF-β signaling. Journal of Experimental Medicine, 2009, 206, 1365-1378.	8.5	81
41	Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas. PLoS Genetics, 2009, 5, e1000575.	3.5	102
42	Generation of mice with conditionally activated transforming growth factor beta signaling through the TβRI/ALK5 receptor. Genesis, 2008, 46, 724-731.	1.6	42
43	Role of TGF-β in Osteolytic Bone Metastases. , 2008, , 95-123.		0
44	Maternal Tgif is required for vascularization of the embryonic placenta. Developmental Biology, 2008, 319, 285-297.	2.0	41
45	Silencing of FLRG, an Antagonist of Activin, Inhibits Human Breast Tumor Cell Growth. Cancer Research, 2007, 67, 7223-7229.	0.9	57
46	Functional analysis of mutations in TGIF associated with holoprosencephaly. Molecular Genetics and Metabolism, 2007, 90, 97-111.	1.1	63
47	Identification of NF-kappaB responsive elements in follistatin related gene (FLRG) promoter. Gene, 2007, 393, 153-162.	2.2	23
48	The human Cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells. Cancer Letters, 2007, 246, 230-236.	7.2	46
49	AF10â€dependent transcription is enhanced by its interaction with FLRG. Biology of the Cell, 2007, 99, 563-571.	2.0	11
50	A novel role for fibronectin type I domain in the regulation of human hematopoietic cell adhesiveness through binding to follistatin domains of FLRG and follistatin. Experimental Cell Research, 2006, 312, 434-442.	2.6	24
51	TGIF Inhibits Retinoid Signaling. Molecular and Cellular Biology, 2006, 26, 990-1001.	2.3	102
52	FLRG, a new ADAM12â€associated protein, modulates osteoclast differentiation. Biology of the Cell, 2005, 97, 577-588.	2.0	24
53	Allele-specific binding to the -308 single nucleotide polymorphism site in the tumour necrosis factor-alpha promoter. International Journal of Immunogenetics, 2004, 31, 15-19.	1.2	33
54	Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFÎ ² family. Experimental Cell Research, 2003, 282, 110-120.	2.6	89

Laurent Bartholin

#	Article	IF	CITATIONS
55	DrosophilaTGIF Proteins Are TranscriptionalActivators. Molecular and Cellular Biology, 2003, 23, 9262-9274.	2.3	37
56	Recurrent involvement of the MLL gene in adult T-lineage acute lymphoblastic leukemia. Blood, 2002, 99, 4647-4649.	1.4	42
57	Transcription activation of FLRG and follistatin by activin A, through Smad proteins, participates in a negative feedback loop to modulate activin A function. Oncogene, 2002, 21, 2227-2235.	5.9	79
58	FLRG, an activin-binding protein, is a new target of TGFÎ ² transcription activation through Smad proteins. Oncogene, 2001, 20, 5409-5419.	5.9	42
59	During hematopoiesis, expression of FLRG, a novel activin A ligand, is regulated by TGF-β. Experimental Hematology, 2001, 29, 301-308.	0.4	47
60	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196.	2.2	21
61	Constitutively active transforming growth factor Î ² receptor 1 in the mouse ovary promotes tumorigenesis. Oncotarget, 0, 7, 40904-40918.	1.8	22