Dingcheng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5094088/publications.pdf Version: 2024-02-01

DINCCHENC 7HIL

#	Article	IF	CITATIONS
1	Semiconductor Nanoplatelets as Ultra-Bright Fluorophores for Two-Photon Absorption Cell Imaging. Journal of Physical Chemistry C, 2022, 126, 5658-5664.	3.1	3
2	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
3	Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra―and Intercellular Calcium Waves. Advanced Materials, 2021, 33, e2008261.	21.0	10
4	Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. Advanced Healthcare Materials, 2021, 10, e2100125.	7.6	11
5	Virus-mimetic DNA-ejecting polyplexes for efficient intracellular cancer gene delivery. Nano Today, 2021, 39, 101215.	11.9	24
6	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	12.8	31
7	Biodegradation of Bi-Labeled Polymer-Coated Rare-Earth Nanoparticles in Adherent Cell Cultures. Chemistry of Materials, 2020, 32, 245-254.	6.7	16
8	Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. International Journal of Molecular Sciences, 2020, 21, 7563.	4.1	7
9	Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymerâ€Encapsulated Molecular Cargos upon Photothermal Heating. Small, 2020, 16, e2003639.	10.0	15
10	Lysosomal Proton Buffering of Poly(ethylenimine) Measured <i>In Situ</i> by Fluorescent pH-Sensor Microcapsules. ACS Nano, 2020, 14, 8012-8023.	14.6	50
11	Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Interfaces, 2020, 12, 14825-14838.	8.0	20
12	Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjugate Chemistry, 2019, 30, 2751-2762.	3.6	30
13	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
14	Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS Nano, 2019, 13, 4631-4639.	14.6	46
15	Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Advanced Drug Delivery Reviews, 2019, 138, 117-132.	13.7	28
16	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	5.4	50
17	Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials, 2018, 178, 559-569.	11.4	50
18	Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. ACS Applied Materials & Interfaces, 2018, 10, 43352-43362.	8.0	37

DINGCHENG ZHU

#	Article	IF	CITATIONS
19	Intracellularly Disintegratable Polysulfoniums for Efficient Gene Delivery. Advanced Functional Materials, 2017, 27, 1606826.	14.9	85
20	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	13.7	307
21	Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery. Advanced Materials, 2016, 28, 1743-1752.	21.0	288
22	Gene Delivery: Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery (Adv. Mater. 9/2016). Advanced Materials, 2016, 28, 1714-1714.	21.0	11
23	Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. Journal of Controlled Release, 2016, 234, 90-97.	9.9	12
24	Zwitterionic poly(lysine methacrylate) brush as an effective carrier for drug delivery. Journal of Controlled Release, 2015, 213, e27-e28.	9.9	3