
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/509387/publications.pdf Version: 2024-02-01

DETLEE W RAHNEMANN

#	Article	IF	CITATIONS
1	Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995, 95, 69-96.	23.0	17,205
2	Understanding TiO ₂ Photocatalysis: Mechanisms and Materials. Chemical Reviews, 2014, 114, 9919-9986.	23.0	4,658
3	Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 1-29.	5.6	1,013
4	Photoelectrocatalytic materials for environmental applications. Journal of Materials Chemistry, 2009, 19, 5089.	6.7	880
5	Photocatalytic water treatment: solar energy applications. Solar Energy, 2004, 77, 445-459.	2.9	843
6	Preparation and characterization of quantum-size titanium dioxide. The Journal of Physical Chemistry, 1988, 92, 5196-5201.	2.9	842
7	Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 2004, 38, 3001-3008.	5.3	776
8	Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. The Journal of Physical Chemistry, 1987, 91, 3789-3798.	2.9	715
9	Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environmental Science & Technology, 1991, 25, 494-500.	4.6	672
10	Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environmental Science & Technology, 1988, 22, 798-806.	4.6	624
11	Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells, 2014, 128, 85-101.	3.0	578
12	Photocatalysis in water environments using artificial and solar light. Catalysis Today, 2000, 58, 199-230.	2.2	467
13	Charge Carrier Dynamics at TiO2 Particles:  Reactivity of Free and Trapped Holes. Journal of Physical Chemistry B, 1997, 101, 4265-4275.	1.2	458
14	Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 2002, 36, 1143-1154.	5.3	424
15	Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry, 2011, 21, 11686.	6.7	417
16	Undesired Role of Sacrificial Reagents in Photocatalysis. Journal of Physical Chemistry Letters, 2013, 4, 3479-3483.	2.1	398
17	Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts. Chemistry of Materials, 2010, 22, 2050-2060.	3.2	394
18	Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide. The Journal of Physical Chemistry, 1984, 88, 709-711.	2.9	391

#	Article	IF	CITATIONS
19	Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 2017, 219, 611-618.	10.8	375
20	TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental, 2010, 99, 398-406.	10.8	365
21	Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 2019, 335, 78-90.	2.2	350
22	A comparative study of nanometer sized Fe(iii)-doped TiO2photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry, 2003, 13, 2322-2329.	6.7	346
23	Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions:Â A Kinetic and Mechanistic Study. Langmuir, 1996, 12, 6368-6376.	1.6	341
24	Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chemistry, 2016, 18, 5391-5411.	4.6	336
25	The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Research on Chemical Intermediates, 2007, 33, 359-375.	1.3	306
26	Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes and Pigments, 2000, 47, 207-218.	2.0	279
27	Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of .alphairon oxide (Fe2O3). The Journal of Physical Chemistry, 1989, 93, 6371-6381.	2.9	268
28	Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 263-276.	5.6	264
29	Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Materials and Solar Cells, 1991, 24, 564-583.	0.4	222
30	Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 223-231.	2.0	222
31	Photo-induced hydrophilicity and self-cleaning: models and reality. Energy and Environmental Science, 2012, 5, 7491.	15.6	222
32	Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields?. Journal of Physical Chemistry Letters, 2015, 6, 1907-1910.	2.1	216
33	A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chemical Communications, 2000, , 1539-1540.	2.2	207
34	Largeâ€scale Synthesis of Urchinâ€like Mesoporous TiO ₂ Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties. Advanced Functional Materials, 2014, 24, 95-104.	7.8	204
35	Palladium Doped Porous Titania Photocatalysts: Impact of Mesoporous Order and Crystallinity. Chemistry of Materials, 2010, 22, 108-116.	3.2	203
36	Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 208-219.	0.8	194

#	Article	IF	CITATIONS
37	Gold Nanoparticles on Mesoporous Interparticle Networks of Titanium Dioxide Nanocrystals for Enhanced Photonic Efficiencies. Journal of Physical Chemistry C, 2009, 113, 7429-7435.	1.5	193
38	Sequential Process Combination of Photocatalytic Oxidation and Dark Reduction for the Removal of Organic Pollutants and Cr(VI) using Ag/TiO ₂ . Environmental Science & Technology, 2017, 51, 3973-3981.	4.6	193
39	Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Advances, 2018, 8, 17582-17594.	1.7	193
40	Mechanism of the hydroxide ion-initiated decomposition of ozone in aqueous solution. The Journal of Physical Chemistry, 1982, 86, 255-259.	2.9	191
41	Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Applied Catalysis B: Environmental, 2000, 26, 193-206.	10.8	188
42	Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochemical and Photobiological Sciences, 2013, 12, 602-609.	1.6	188
43	Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 283-293.	2.0	185
44	Photocatalytic conversion of biomass into valuable products: a meaningful approach?. Green Chemistry, 2018, 20, 1169-1192.	4.6	181
45	Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 247-255.	2.0	178
46	Improving the Photocatalytic Performance of Mesoporous Titania Films by Modification with Gold Nanostructures. Chemistry of Materials, 2009, 21, 1645-1653.	3.2	170
47	Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. Journal of Hazardous Materials, 2012, 211-212, 161-171.	6.5	170
48	Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catalysis Today, 2017, 284, 169-178.	2.2	166
49	Detection of the intermediates of colloidal TiO2-catalysed photoreactions. Faraday Discussions of the Chemical Society, 1984, 78, 151.	2.2	165
50	Photocatalytic Activities of Different Well-defined Single Crystal TiO ₂ Surfaces: Anatase versus Rutile. Journal of Physical Chemistry Letters, 2011, 2, 2461-2465.	2.1	164
51	A Facile Surface Passivation of Hematite Photoanodes with TiO ₂ Overlayers for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 24053-24062.	4.0	164
52	Ultrasmall Metal Oxide Particles: Preparation, Photophysical Characterization, and Photocatalytic Properties. Israel Journal of Chemistry, 1993, 33, 115-136.	1.0	162
53	Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 169-176.	2.0	161
54	Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity. RSC Advances, 2016, 6, 78335-78350.	1.7	154

#	Article	IF	CITATIONS
55	Mesostructured Pt/TiO ₂ Nanocomposites as Highly Active Photocatalysts for the Photocatalysts for the Photooxidation of Dichloroacetic Acid. Journal of Physical Chemistry C, 2011, 115, 5784-5791.	1.5	150
56	CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering, 2021, 9, 104756.	3.3	147
57	Solar water treatment: principles and reactors. Water Science and Technology, 1997, 35, 137-148.	1.2	142
58	Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Applied Catalysis B: Environmental, 2002, 36, 161-169.	10.8	140
59	One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2017, 218, 758-769.	10.8	138
60	Construction of ternary hybrid layered reduced graphene oxide supported g-C 3 N 4 -TiO 2 nanocomposite and its photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 2018, 43, 3892-3904.	3.8	137
61	Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. Journal of Hazardous Materials, 2016, 307, 43-54.	6.5	131
62	Enhanced Photoelectrochemical Water Oxidation on Nanostructured Hematite Photoanodes via p-CaFe ₂ O ₄ /n-Fe ₂ O ₃ Heterojunction Formation. Journal of Physical Chemistry C, 2015, 119, 5864-5871.	1.5	130
63	WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today, 2013, 209, 28-34.	2.2	129
64	Quantum Yield of Formaldehyde Formation in the Presence of Colloidal TiO2-Based Photocatalysts: Effect of Intermittent Illumination, Platinization, and Deoxygenation. Journal of Physical Chemistry B, 2004, 108, 14082-14092.	1.2	126
65	A fine route to tune the photocatalytic activity of TiO2. Applied Catalysis B: Environmental, 2006, 63, 31-40.	10.8	125
66	Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe2O3, ZnO, TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 48, 161-169.	2.0	123
67	Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 2017, 173, 258-268.	3.9	122
68	Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO ₂ /SiO ₂ Thin Films on Polycarbonate. Langmuir, 2013, 29, 3730-3739.	1.6	120
69	Bi ₂ WO ₆ Inverse Opals: Facile Fabrication and Efficient Visibleâ€Lightâ€Driven Photocatalytic and Photoelectrochemical Waterâ€6plitting Activity. Small, 2011, 7, 2714-2720.	5.2	119
70	Formation of Nitroaromatic Compounds in Advanced Oxidation Processes:Â Photolysis versus Photocatalysis. Environmental Science & Technology, 1999, 33, 294-300.	4.6	117
71	The role of electron transfer in photocatalysis: Fact and fictions. Applied Catalysis B: Environmental, 2012, 128, 91-104.	10.8	116
72	pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb ₃ Nb ₄ O ₁₃ . Journal of Physical Chemistry C, 2011, 115, 8014-8023.	1.5	115

#	Article	IF	CITATIONS
73	Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catalysis Today, 2011, 161, 196-201.	2.2	115
74	Electron transfer reactions of halogenated aliphatic peroxyl radicals: measurement of absolute rate constants by pulse radiolysis. Journal of the Chemical Society Perkin Transactions II, 1980, , 296.	0.9	113
75	Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. Journal of the Chemical Society Perkin Transactions II, 1975, , 675-685.	0.9	112
76	Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 2007, 67, 785-792.	4.2	112
77	Photoelectrochemical and theoretical investigations of spinel type ferrites (M _{<i>x</i>} Fe _{3âr'<i>x</i>} O ₄) for water splitting: a mini-review. Journal of Photonics for Energy, 2016, 7, 012009.	0.8	111
78	Solar Water Detoxification: Novel TiO2 Powders as Highly Active Photocatalysts. Journal of Solar Energy Engineering, Transactions of the ASME, 1997, 119, 120-125.	1.1	110
79	In situ synthesis of ZnO/ZnTe common cation heterostructure and its visible-light photocatalytic reduction of CO2 into CH4. Applied Catalysis B: Environmental, 2015, 166-167, 345-352.	10.8	110
80	Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. Applied Catalysis B: Environmental, 2019, 242, 218-226.	10.8	110
81	Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management, 2006, 80, 99-106.	3.8	108
82	TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Applied Catalysis B: Environmental, 2013, 129, 62-70.	10.8	108
83	Highly Active Crystalline Mesoporous TiO ₂ Films Coated onto Polycarbonate Substrates for Self-Cleaning Applications. Journal of Physical Chemistry C, 2011, 115, 10405-10411.	1.5	107
84	Efficient photocatalysis of the irreversible one-electron and two-electron reduction of halothane on platinized colloidal titanium dioxide in aqueous suspension. The Journal of Physical Chemistry, 1987, 91, 3782-3788.	2.9	106
85	Self-Cleaning Properties, Mechanical Stability, and Adhesion Strength of Transparent Photocatalytic TiO ₂ –ZnO Coatings on Polycarbonate. ACS Applied Materials & Interfaces, 2014, 6, 2270-2278.	4.0	106
86	Highly Efficient and Selective Oxidation of Aromatic Alcohols Photocatalyzed by Nanoporous Hierarchical Pt/Bi ₂ WO ₆ in Organic Solvent-Free Environment. ACS Applied Materials & Interfaces, 2015, 7, 1257-1269.	4.0	106
87	Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light. Journal of Colloid and Interface Science, 2020, 580, 223-233.	5.0	106
88	Photocatalytic degradation of organic compounds: accelerating the process efficiency. Water Science and Technology, 1997, 35, 79-86.	1.2	105
89	Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 213-219.	2.0	104
90	ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2. Physical Chemistry Chemical Physics, 2006, 8, 3232.	1.3	103

#	Article	IF	CITATIONS
91	Versatile Aerogel Fabrication by Freezing and Subsequent Freezeâ€Drying of Colloidal Nanoparticle Solutions. Angewandte Chemie - International Edition, 2016, 55, 1200-1203.	7.2	103
92	Long-term investigation of the photocatalytic hydrogen production on platinized TiO2: an isotopic study. Energy and Environmental Science, 2014, 7, 1420.	15.6	102
93	One-pot, self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation. Journal of Physics and Chemistry of Solids, 2018, 115, 59-68.	1.9	102
94	Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chemical Research in Toxicology, 2020, 33, 1292-1311.	1.7	102
95	Iron-based photocatalytic and photoelectrocatalytic nano-structures: Facts, perspectives, and expectations. Applied Catalysis B: Environmental, 2019, 244, 1065-1095.	10.8	100
96	Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science, 2020, 109, 100620.	16.0	100
97	Addition of oxygen to organic sulfur radicals. The Journal of Physical Chemistry, 1978, 82, 2777-2780.	2.9	99
98	Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway. Research on Chemical Intermediates, 1997, 23, 247-274.	1.3	99
99	Large scale studies in solar catalytic wastewater treatment. Catalysis Today, 1999, 54, 267-282.	2.2	99
100	H 2 O 2 /UV-C and Fe 2+ /H 2 O 2 /UV-C versus TiO 2 /UV-A Treatment for Reactive Dye Wastewater. Journal of Environmental Engineering, ASCE, 2000, 126, 903-911.	0.7	99
101	One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chemistry, 2011, 13, 428.	4.6	99
102	Layer-by-Layer TiO ₂ /WO ₃ Thin Films As Efficient Photocatalytic Self-Cleaning Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 16859-16866.	4.0	99
103	Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide. ACS Catalysis, 2019, 9, 25-37.	5.5	98
104	Direct Synthesis of Photocatalytically Active Rutile TiO ₂ Nanorods Partly Decorated with Anatase Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 4909-4915.	1.5	93
105	Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Materials, 2015, 3, .	2.2	92
106	Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles. Separation and Purification Technology, 2019, 209, 764-775.	3.9	91
107	Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. Comptes Rendus Chimie, 2006, 9, 761-773.	0.2	90
108	Kinetic and Mechanistic Investigations of Multielectron Transfer Reactions Induced by Stored Electrons in TiO ₂ Nanoparticles: A Stopped Flow Study. Journal of Physical Chemistry A, 2011, 115, 2139-2147.	1.1	90

#	Article	IF	CITATIONS
109	Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 1-28.	5.6	90
110	Twoâ€Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 8103-8108.	7.2	90
111	Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites. Photochemical and Photobiological Sciences, 2009, 8, 683-690.	1.6	88
112	Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol. Journal of Molecular Catalysis A, 2012, 358, 145-151.	4.8	88
113	Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions. Journal of Physical Chemistry Letters, 2015, 6, 3903-3910.	2.1	88
114	Effect of the degree of inversion on optical properties of spinel ZnFe ₂ O ₄ . Physical Chemistry Chemical Physics, 2018, 20, 28267-28278.	1.3	88
115	Performance of mesoporous α-Fe2O3/g-C3N4 heterojunction for photoreduction of Hg(II) under visible light illumination. Ceramics International, 2020, 46, 23098-23106.	2.3	88
116	Fundamental problems of water splitting at cadmium sulfide. Chemical Physics Letters, 1986, 127, 419-423.	1.2	87
117	TiO ₂ Thin Film Electrodes: Correlation between Photocatalytic Activity and Electrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 19097-19101.	1.5	87
118	Hydroxyapatite/titanium dioxide nanocomposites for controlled photocatalytic NO oxidation. Applied Catalysis B: Environmental, 2011, 106, 398-404.	10.8	87
119	Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 387-391.	2.0	86
120	Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. Applied Catalysis B: Environmental, 2006, 62, 201-207.	10.8	86
121	Structure and stability of radical cations from cyclic and open-chain dithia compounds in aqueous solutions. Journal of the American Chemical Society, 1979, 101, 5322-5329.	6.6	85
122	One electron reduction of CCl4 in oxygenated aqueous solutions: A CCl3O2•-free radical mediated formation of Clâ^ and CO2. Chemico-Biological Interactions, 1983, 47, 15-27.	1.7	85
123	Cobalt(II) tetrasulfophthalocyanine on titanium dioxide: A new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions. The Journal of Physical Chemistry, 1987, 91, 2109-2117.	2.9	83
124	Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?. Research on Chemical Intermediates, 2008, 34, 381-392.	1.3	83
125	Mesoporous TiO2 nanocrystals as efficient photocatalysts: Impact of calcination temperature and phase transformation on photocatalytic performance. Chemical Engineering Journal, 2015, 264, 417-424.	6.6	83
126	Designing Optimal Metal-Doped Photocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size. Journal of Physical Chemistry C, 2012, 116, 25558-25562.	1.5	82

#	Article	IF	CITATIONS
127	Novel Ag decorated, BiOCl surface doped AgVO3 nanobelt ternary composite with Z-scheme homojunction-heterojunction interface for high prolific photo switching, quantum efficiency and hole mediated photocatalysis. Applied Catalysis B: Environmental, 2021, 293, 120224.	10.8	82
128	Semiconductor-mediated photocatalyzed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Applied Catalysis B: Environmental, 2002, 36, 95-111.	10.8	81
129	FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 73-80.	2.3	81
130	Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Physical Chemistry Chemical Physics, 2011, 13, 20155.	1.3	81
131	Influence of the Dopant Concentration on the Photocatalytic Activity: Al-Doped TiO ₂ . Journal of Physical Chemistry C, 2015, 119, 24695-24703.	1.5	81
132	Rate constants of the reaction of the hydrated electron and hydroxyl radical with ozone in aqueous solution. The Journal of Physical Chemistry, 1982, 86, 252-255.	2.9	80
133	Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 1996, 56, 455-469.	2.9	80
134	Novel (and better?) titania-based photocatalysts: Brookite nanorods and mesoporous structures. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 183-193.	2.0	78
135	Highly active non-metals doped mixed-phase TiO 2 for photocatalytic oxidation of ibuprofen under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 530-540.	2.0	78
136	Photodegradation of the herbicide imazapyr over mesoporous In2O3-TiO2 nanocomposites with enhanced photonic efficiency. Separation and Purification Technology, 2018, 205, 66-73.	3.9	78
137	Rh/TiO ₂ -Photocatalyzed Acceptorless Dehydrogenation of N-Heterocycles upon Visible-Light Illumination. ACS Catalysis, 2020, 10, 5542-5553.	5.5	78
138	Composite hydroxyapatite/TiO2 materials for photocatalytic oxidation of NOx. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1046-1052.	1.7	77
139	Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation. Catalysis Today, 2013, 209, 2-7.	2.2	76
140	Study of the Efficiency of UV and Visibleâ€Light Photocatalytic Oxidation of Methanol on Mesoporous RuO ₂ –TiO ₂ Nanocomposites. ChemPhysChem, 2011, 12, 982-991.	1.0	75
141	The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Physical Chemistry Chemical Physics, 2014, 16, 14867.	1.3	75
142	Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres. Journal of Alloys and Compounds, 2015, 632, 837-844.	2.8	75
143	A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 66-73.	2.0	75
144	Semiconductor-Mediated Photocatalyzed Degradation of a Herbicide Derivative, Chlorotoluron, in Aqueous Suspensions. Environmental Science & Technology, 2006, 40, 4765-4770.	4.6	74

#	Article	IF	CITATIONS
145	Three dimensional spheroid cell culture for nanoparticle safety testing. Journal of Biotechnology, 2015, 205, 120-129.	1.9	74
146	Surface-grafted WO3/TiO2 photocatalysts: Enhanced visible-light activity towards indoor air purification. Catalysis Today, 2018, 313, 63-71.	2.2	74
147	Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2-TiO2 nanocomposites. Applied Catalysis A: General, 2012, 431-432, 62-68.	2.2	73
148	Facile Synthesis of Highly Ordered Mesoporous and Well Crystalline TiO ₂ : Impact of Different Gas Atmosphere and Calcination Temperatures on Structural Properties. Chemistry of Materials, 2012, 24, 1268-1275.	3.2	73
149	Visible-Light-Mediated Photocatalytic Aerobic Dehydrogenation of N-heterocycles by Surface-Grafted TiO ₂ and 4-amino-TEMPO. ACS Catalysis, 2019, 9, 10694-10704.	5.5	72
150	Decoration of g-C3N4 nanosheets by mesoporous CoFe2O4 nanoparticles for promoting visible-light photocatalytic Hg(II) reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125206.	2.3	72
151	Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide. Chemosphere, 2005, 61, 457-468.	4.2	70
152	Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	70
153	Photocatalytic activity of hydrophobized mesoporous thin films of TiO2. Microporous and Mesoporous Materials, 2005, 84, 247-253.	2.2	69
154	Photocatalytic degradation of trinitrotoluene and other nitroaromatic compounds. Chemosphere, 1995, 30, 2333-2341.	4.2	68
155	Solar water treatment: Principles and reactors. Water Science and Technology, 1997, 35, 137.	1.2	68
156	Microscopic characterization of the photocatalytic oxidation of oxalic acid adsorbed onto TiO2 by FTIR-ATR. Catalysis Today, 2005, 101, 237-244.	2.2	67
157	Reduction of Carbon Dioxide by Magnetite:  Implications for the Primordial Synthesis of Organic Molecules. Journal of the American Chemical Society, 2000, 122, 970-971.	6.6	66
158	The Insulated SolarFenton Hybrid Process: Fundamental Investigations. Helvetica Chimica Acta, 2001, 84, 3742-3759.	1.0	66
159	Photocatalytic conversion of nitroaromatic compounds in the presence of TiO2. Catalysis Today, 2009, 144, 154-159.	2.2	66
160	Metalâ€Free Porphyrinâ€Sensitized Mesoporous Titania Films For Visibleâ€Light Indoor Air Oxidation. ChemSusChem, 2010, 3, 1057-1062.	3.6	66
161	Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen(ii) oxide at the surface of TiO2. Physical Chemistry Chemical Physics, 2013, 15, 20876.	1.3	66
162	Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Applied Catalysis B: Environmental, 2013, 142-143, 761-768.	10.8	66

#	Article	IF	CITATIONS
163	A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catalysis Today, 2018, 300, 89-98.	2.2	66
164	Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nature Communications, 2020, 11, 967.	5.8	66
165	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
166	In situ ATR-FTIR study of H ₂ O and D ₂ O adsorption on TiO ₂ under UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 22940-22946.	1.3	64
167	Mechanisms of Simultaneous Hydrogen Production and Formaldehyde Oxidation in H ₂ O and D ₂ O over Platinized TiO ₂ . ACS Catalysis, 2017, 7, 4753-4758.	5.5	64
168	Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity. Applied Catalysis A: General, 2013, 466, 32-37.	2.2	62
169	Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14859-14869.	4.0	62
170	Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Materials, 2015, 3, .	2.2	62
171	Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Materials Chemistry Frontiers, 2018, 2, 1664-1673.	3.2	62
172	Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions. Physical Chemistry Chemical Physics, 2009, 11, 1794.	1.3	61
173	Charge carrier dynamics and photocatalytic behavior of TiO ₂ nanopowders submitted to hydrothermal or conventional heat treatment. RSC Advances, 2015, 5, 70536-70545.	1.7	61
174	New insights into the plasmonic enhancement for photocatalytic H ₂ production by Cu–TiO ₂ upon visible light illumination. Physical Chemistry Chemical Physics, 2018, 20, 5264-5273.	1.3	60
175	Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25. Journal of Hazardous Materials, 2012, 211-212, 240-246.	6.5	59
176	Reduced graphene oxide wrapped Cu2O supported on C3N4: An efficient visible light responsive semiconductor photocatalyst. APL Materials, 2015, 3, .	2.2	59
177	Multifunctional Gadoliniumâ€Doped Mesoporous TiO ₂ Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment. Small, 2017, 13, 1700349.	5.2	59
178	Ag/Ag2O as a Co-Catalyst in TiO2 Photocatalysis: Effect of the Co-Catalyst/Photocatalyst Mass Ratio. Catalysts, 2018, 8, 647.	1.6	59
179	Photocatalytic degradation of organic compounds: Accelerating the process efficiency. Water Science and Technology, 1997, 35, 79.	1.2	58
180	Semiconductor-mediated photocatalysed degradation of two selected priority organic pollutants, benzidine and 1,2-diphenylhydrazine, in aqueous suspension. Chemosphere, 2002, 49, 193-203.	4.2	58

#	Article	IF	CITATIONS
181	Photocatalytic NOx removal using tantalum oxide nanoparticles: A benign pathway. Applied Catalysis B: Environmental, 2021, 291, 119974.	10.8	58
182	Photocatalytic Detoxification of Polluted Waters. Handbook of Environmental Chemistry, 1999, , 285-351.	0.2	58
183	Concentrating versus non-concentrating reactors for solar water detoxification. Solar Energy Materials and Solar Cells, 1995, 38, 441-451.	3.0	57
184	Optical density and photonic efficiency of silica-supported TiO2 photocatalysts. Water Research, 2006, 40, 833-839.	5.3	57
185	Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid, in aqueous suspensions. Journal of Molecular Catalysis A, 2007, 264, 66-72.	4.8	57
186	Photocatalytic degradation of imazapyr using mesoporous Al2O3–TiO2 nanocomposites. Separation and Purification Technology, 2015, 145, 147-153.	3.9	57
187	Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal, 2021, 426, 131681.	6.6	57
188	Photochemistry of colloidal metal sulfides. 3. Photoelectron emission from cadmium sulfide and cadmium sulfide-zinc sulfide cocolloids. The Journal of Physical Chemistry, 1982, 86, 4656-4657.	2.9	56
189	Evaluation of two types of TiO2-based catalysts by photodegradation of DMSO in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 164-171.	2.0	56
190	Catalytic Role of Surface Oxygens in TiO ₂ Photooxidation Reactions: Aqueous Benzene Photooxidation with Ti ¹⁸ O ₂ under Anaerobic Conditions. Journal of Physical Chemistry Letters, 2013, 4, 1415-1422.	2.1	56
191	Controlled synthesis of cobalt telluride superstructures for the visible light photo-conversion of carbon dioxide into methane. Applied Catalysis A: General, 2014, 487, 202-209.	2.2	56
192	Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Separation and Purification Technology, 2020, 251, 117320.	3.9	56
193	A comparative study into the photocatalytic properties of thin mesoporous layers of TiO2 with controlled mesoporosity. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 181-188.	2.0	55
194	Harvesting visible light with MoO ₃ nanorods modified by Fe(<scp>iii</scp>) nanoclusters for effective photocatalytic degradation of organic pollutants. Physical Chemistry Chemical Physics, 2018, 20, 4538-4545.	1.3	55
195	A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. Reactive and Functional Polymers, 2018, 127, 139-152.	2.0	55
196	Highly efficient solar light-assisted TiO2 nanocrystalline for photodegradation of ibuprofen drug. Optical Materials, 2019, 88, 117-127.	1.7	55
197	Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production. Catalysts, 2020, 10, 126.	1.6	55
198	Visible-light photocatalytic activity of zinc ferrites. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 118-126.	2.0	54

#	Article	IF	CITATIONS
199	Mechanistic insights into plasmonic photocatalysts in utilizing visible light. Beilstein Journal of Nanotechnology, 2018, 9, 628-648.	1.5	54
200	Synthesis of Nanovoid Bi ₂ WO ₆ 2D Ordered Arrays as Photoanodes for Photoelectrochemical Water Splitting. ChemSusChem, 2013, 6, 283-290.	3.6	53
201	Cobalt(II) tetrasulfophthalocyanine on titanium dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide. The Journal of Physical Chemistry, 1987, 91, 6245-6251.	2.9	52
202	Comprehensive Kinetic and Mechanistic Analysis of TiO ₂ Photocatalytic Reactions According to the Direct–Indirect Model: (II) Experimental Validation. Journal of Physical Chemistry C, 2014, 118, 14276-14290.	1.5	52
203	Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr(VI) under UV-light irradiation. Journal of Environmental Chemical Engineering, 2018, 6, 4885-4898.	3.3	52
204	Photocatalytic degradation of trinitrotoluene and trinitrobenzene: influence of hydrogen peroxide. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 94, 231-236.	2.0	51
205	Role of Platinum Deposited on TiO ₂ in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	51
206	Facile fabrication of visible light induced Bi 2 O 3 nanorod using conventional heat treatment method. Journal of Molecular Structure, 2016, 1107, 39-46.	1.8	51
207	Visible light-induced catalytic activation of peroxymonosulfate using heterogeneous surface complexes of amino acids on TiO2. Applied Catalysis B: Environmental, 2018, 225, 406-414.	10.8	51
208	Formation of Toxic Intermediates Upon the Photocatalytic Degradation of the Pesticide Diuron. Research on Chemical Intermediates, 1999, 25, 667-683.	1.3	49
209	In situ Electron Microscopy Investigation of Fe(III)-doped TiO ₂ Nanoparticles in an Aqueous Environment. Journal of Nanoparticle Research, 2004, 6, 119-122.	0.8	49
210	Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Physical Chemistry Chemical Physics, 2014, 16, 5833.	1.3	49
211	Direct Measurement of Size, Three-Dimensional Shape, and Specific Surface Area of Anatase Nanocrystals. ChemPhysChem, 2007, 8, 805-809.	1.0	48
212	Visible light-driven novel Bi2Ti2O7/CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere, 2021, 275, 130083.	4.2	48
213	The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere, 2009, 76, 549-553.	4.2	47
214	Photocatalytic hydrogen production with non-stoichiometric pyrochlore bismuth titanate. Catalysis Today, 2014, 225, 102-110.	2.2	47
215	Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Applied Surface Science, 2014, 319, 44-49.	3.1	47
216	Visibleâ€Light Photocatalytic Conversion of Carbon Dioxide into Methane Using Cu ₂ 0/TiO ₂ Hollow Nanospheres. Chinese Journal of Chemistry, 2015, 33, 112-118.	2.6	47

#	Article	IF	CITATIONS
217	A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater. Journal of Hazardous Materials, 2019, 369, 384-397.	6.5	47
218	Pb-Free Cs3Bi2I9 Perovskite as a Visible-Light-Active Photocatalyst for Organic Pollutant Degradation. Nanomaterials, 2020, 10, 763.	1.9	47
219	Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: Optimisation of the method and comparison with other synthetic routes. Applied Catalysis B: Environmental, 2005, 61, 259-266.	10.8	46
220	New Insights into the Mechanism of TiO ₂ Photocatalysis: Thermal Processes beyond the Electron–Hole Creation. Journal of Physical Chemistry C, 2011, 115, 19676-19685.	1.5	46
221	Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Materials and Design, 2017, 119, 270-276.	3.3	46
222	Mechanisms of Photocatalytic Molecular Hydrogen and Molecular Oxygen Evolution over La-Doped NaTaO ₃ Particles: Effect of Different Cocatalysts and Their Specific Activity. ACS Catalysis, 2018, 8, 2313-2325.	5.5	46
223	Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. Journal of Molecular Liquids, 2021, 344, 117820.	2.3	46
224	Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 2000, 26, 207-220.	1.3	45
225	Co-catalyst-free photocatalytic hydrogen evolution on TiO2: Synthesis of optimized photocatalyst through statistical material science. Applied Catalysis B: Environmental, 2018, 238, 422-433.	10.8	45
226	Synthesis of Ternary and Quaternary Au and Pt Decorated CdSe/CdS Heteronanoplatelets with Controllable Morphology. Advanced Functional Materials, 2017, 27, 1604685.	7.8	44
227	Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium. Ultrasonics Sonochemistry, 2017, 35, 342-350.	3.8	44
228	Free radical oxidation of organic sulphur compounds in aqueous solution. Faraday Discussions of the Chemical Society, 1977, 63, 213-225.	2.2	43
229	Photocatalytic water treatment: fundamental knowledge required for its practical application. Water Science and Technology, 2004, 49, 135-140.	1.2	43
230	Sonochemical/hydration—dehydration synthesis of Pt—TiO2 NPs/decorated carbon nanotubes with enhanced photocatalytic hydrogen production activity. Photochemical and Photobiological Sciences, 2016, 15, 1347-1357.	1.6	43
231	Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. Journal of Materials Science, 2017, 52, 2746-2762.	1.7	43
232	Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chemical Engineering Journal, 2020, 400, 125909.	6.6	43
233	Adsorption of oxalate on rutile particles in aqueous solutions: a spectroscopic, electron-microscopic and theoretical study. Physical Chemistry Chemical Physics, 2008, 10, 1960.	1.3	42
234	Arenesulfonic Acid-Functionalized Mesoporous Silica Decorated with Titania: A Heterogeneous Catalyst for the One-Pot Photocatalytic Synthesis of Quinolines from Nitroaromatic Compounds and Alcohols. ACS Catalysis, 2013, 3, 565-572.	5.5	42

#	Article	IF	CITATIONS
235	Synthesis of visible light driven TiO2 coated carbon nanospheres for degradation of dyes. Arabian Journal of Chemistry, 2019, 12, 3534-3545.	2.3	42
236	Free radical induced one-electron oxidation of the phenothiazines chlorpromazine and promethazine. Journal of the Chemical Society Perkin Transactions II, 1983, , 1661.	0.9	41
237	A Novel Nonconcentrating Reactor for Solar Water Detoxification. Journal of Solar Energy Engineering, Transactions of the ASME, 1997, 119, 114-119.	1.1	41
238	Crumpled Cu 2 O-g-C 3 N 4 nanosheets for hydrogen evolution catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 527, 34-41.	2.3	41
239	Nature and photoreactivity of TiO2-rGO nanocomposites in aqueous suspensions under UV-A irradiation. Applied Catalysis B: Environmental, 2019, 241, 375-384.	10.8	41
240	Latest progress in g-C ₃ N ₄ based heterojunctions for hydrogen production via photocatalytic water splitting: a mini review. JPhys Energy, 2020, 2, 042003.	2.3	41
241	Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Applied Catalysis B: Environmental, 2011, 103, 99-108.	10.8	40
242	Synthesis of flower like zinc oxide nanostructure and its application as a photocatalyst. Separation and Purification Technology, 2011, 80, 125-130.	3.9	40
243	In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination. Catalysts, 2019, 9, 169.	1.6	40
244	Preparation ultrafine l-Methionine (C,N,S triple doped)-TiO2-ZnO nanoparticles and their photocatalytic performance for fouling alleviation in PES nanocomposite membrane. Composites Part B: Engineering, 2019, 176, 107158.	5.9	39
245	Photocatalytic Degradation of Anthracene in Closed System Reactor. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	38
246	Stopband tuning of TiO2 inverse opals for slow photon absorption. Materials Research Bulletin, 2017, 91, 155-165.	2.7	38
247	Mechanisms of Organic Transformations on Semiconductor Particles. , 1991, , 251-276.		38
248	Multilayered ordered mesoporous platinum/titania composite films: does the photocatalytic activity benefit from the film thickness?. Journal of Materials Chemistry, 2011, 21, 7802.	6.7	37
249	Hematite Photocatalysis: Dechlorination of 2,6-Dichloroindophenol and Oxidation of Water. Journal of Physical Chemistry C, 2011, 115, 25442-25450.	1.5	37
250	Enhancing the photocatalytic activity of TiO2 by pH control: a case study for the degradation of EDTA. Catalysis Science and Technology, 2013, 3, 3216.	2.1	37
251	Factors affecting the selectivity of the photocatalytic conversion of nitroaromatic compounds over TiO2 to valuable nitrogen-containing organic compounds. Physical Chemistry Chemical Physics, 2013, 15, 2992.	1.3	37
252	Insights into Different Photocatalytic Oxidation Activities of Anatase, Brookite, and Rutile Single-Crystal Facets. ACS Catalysis, 2019, 9, 1001-1012.	5.5	37

#	Article	IF	CITATIONS
253	Photocatalytic degradation of azo dyes by BiOX (X=Cl, Br). Journal of Molecular Catalysis A, 2012, 365, 1-7.	4.8	36
254	Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide. Catalysis Today, 2014, 230, 158-165.	2.2	36
255	Photocatalytic reactors for treating water pollution with solar illumination. I: A simplified analysis for batch reactors. Chemical Engineering Science, 2003, 58, 2587-2599.	1.9	35
256	Synthesis, Characterization and Photocatalytic Activity of Carbon Nanotube/Titanium Dioxide Nanocomposites. Arabian Journal for Science and Engineering, 2018, 43, 199-210.	1.7	35
257	Unraveling the photocatalytic properties of TiO2/WO3 mixed oxidesâ€. Photochemical and Photobiological Sciences, 2019, 18, 2469-2483.	1.6	35
258	Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100–TiO2 for enhanced photocatalytic performance. Solar Energy Materials and Solar Cells, 2020, 204, 110214.	3.0	35
259	Nitrogen/Carbon-Coated Zero-Valent Copper as Highly Efficient Co-catalysts for TiO ₂ Applied in Photocatalytic and Photoelectrocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2020, 12, 30365-30380.	4.0	35
260	Photocatalytic Disinfection of Municipal Wastewater. Chemical Engineering and Technology, 1998, 21, 356.	0.9	34
261	Reaction dynamics of the transfer of stored electrons on TiO2 nanoparticles: A stopped flow study. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 271-274.	2.0	34
262	Transition metal-modified zinc oxides for UV and visible light photocatalysis. Environmental Science and Pollution Research, 2012, 19, 3688-3695.	2.7	34
263	Hydrous TiO2 spheres: An excellent platform for the rational design of mesoporous anatase spheres for photoelectrochemical applications. Catalysis Today, 2014, 230, 197-204.	2.2	34
264	Electrochemical deposition of Fe ₂ O ₃ in the presence of organic additives: a route to enhanced photoactivity. RSC Advances, 2015, 5, 103512-103522.	1.7	34
265	Photocatalytic CO ₂ Reduction by Re(I) Polypyridyl Complexes Immobilized on Niobates Nanoscrolls. ACS Sustainable Chemistry and Engineering, 2018, 6, 6073-6083.	3.2	34
266	TiO2 Photocatalysis for the Transformation of Aromatic Water Pollutants into Fuels. Catalysts, 2021, 11, 317.	1.6	34
267	The photocatalytic destruction of the cyanotoxin, nodularin using TiO2. Applied Catalysis B: Environmental, 2005, 60, 245-252.	10.8	33
268	Nitrogen(II) Oxide Charge Transfer Complexes on TiO ₂ : A New Source for Visible-Light Activity. Journal of Physical Chemistry C, 2015, 119, 4488-4501.	1.5	33
269	The two-electron oxidation of methyl viologen. Detection and analysis of two fluorescing products. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2559.	1.0	32
270	Preparation of porous CdIn2S4 photocatalyst films by hydrothermal crystal growth at solid/liquid/gas interfaces. Thin Solid Films, 2008, 516, 4988-4992.	0.8	32

#	Article	IF	CITATIONS
271	New insights into the surface plasmon resonance (SPR) driven photocatalytic H ₂ production of Au–TiO ₂ . RSC Advances, 2018, 8, 25881-25887.	1.7	32
272	Nitrogen Doped Reduced Graphene Oxide Hybrid Metal Free Catalyst for Effective Reduction of 4-Nitrophenol. Science of Advanced Materials, 2015, 7, 1443-1449.	0.1	32
273	Comparison of the photoelectrochemical oxidation of methanol on rutile TiO2 (001) and (100) single crystal faces studied by intensity modulated photocurrent spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 2774.	1.3	31
274	Photocatalytic conversion of acetate into molecular hydrogen and hydrocarbons over Pt/TiO 2 : pH dependent formation of Kolbe and Hofer-Moest products. Journal of Catalysis, 2017, 349, 128-135.	3.1	31
275	Completely integrated wirelessly-powered photocatalyst-coated spheres as a novel means to perform heterogeneous photocatalytic reactions. Catalysis Science and Technology, 2017, 7, 4977-4983.	2.1	31
276	Photocatalytic degradation of the herbicide imazapyr: do the initial degradation rates correlate with the adsorption kinetics and isotherms?. Catalysis Science and Technology, 2018, 8, 985-995.	2.1	31
277	Synthesis of iron and copper cluster-grafted zinc oxide nanorod with enhanced visible-light-induced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 509, 68-72.	5.0	31
278	Photomineralization of recalcitrant wastewaters by a novel magnetically recyclable boron doped-TiO2-SiO2 cobalt ferrite nanocomposite as a visible-driven heterogeneous photocatalyst. Journal of Environmental Chemical Engineering, 2018, 6, 6370-6381.	3.3	31
279	Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem, 2019, 11, 3093-3100.	1.8	31
280	Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide. Journal of Molecular Catalysis A, 2007, 265, 231-236.	4.8	30
281	Preparation, Characterization, and Photocatalytic Applications of MWCNTs/TiO ₂ Composite. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	30
282	Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging. Toxics, 2017, 5, 15.	1.6	30
283	Design and synthesis of imidazole-triphenylamine based organic materials for dye sensitized solar cells. Materials Letters, 2019, 242, 28-31.	1.3	30
284	Photocatalysed reaction of few selected organic systems in presence of titanium dioxide. Applied Catalysis A: General, 2005, 289, 224-230.	2.2	29
285	Pathways of the photocatalytic reaction of acetate in H2O and D2O: A combined EPR and ATR-FTIR study. Journal of Catalysis, 2016, 344, 831-840.	3.1	29
286	Influence of TiO2 agglomerate and aggregate sizes on photocatalytic activity. Journal of Materials Science, 2017, 52, 1047-1056.	1.7	29
287	Ultrathin-Layer Structure of BiOI Microspheres Decorated on N-Doped Biochar With Efficient Photocatalytic Activity. Frontiers in Chemistry, 2019, 7, 378.	1.8	29
288	Mechanistic Insights into Hydrogen Evolution by Photocatalytic Reforming of Naphthalene. ACS Catalysis, 2020, 10, 7398-7412.	5.5	29

#	Article	IF	CITATIONS
289	The adsorption and photodegradation of oxalic acid at the TiO2 surface. Water Science and Technology, 2007, 55, 139-145.	1.2	28
290	ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity. Environmental Science and Pollution Research, 2019, 26, 12288-12301.	2.7	28
291	Application of EPR Spectroscopy in TiO2 and Nb2O5 Photocatalysis. Catalysts, 2021, 11, 1514.	1.6	28
292	Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Science and Technology, 2001, 44, 279-286.	1.2	27
293	Analysis of Photocatalytic Reactors Employing the Photonic Efficiency and the Removal Efficiency Parameters: Degradation of Radiation Absorbing and Nonabsorbing Pollutants. Industrial & Engineering Chemistry Research, 2010, 49, 6898-6908.	1.8	27
294	Growth and Reactivity of Silver Nanoparticles on the Surface of TiO ₂ : A Stopped-Flow Study. Journal of Physical Chemistry C, 2011, 115, 12163-12172.	1.5	27
295	Low Inhomogeneous Broadening of Excitonic Resonance in MAPbBr ₃ Single Crystals. Journal of Physical Chemistry Letters, 2018, 9, 302-305.	2.1	27
296	A Bifunctional 2D Interlayered βâ€Cu ₂ V ₂ O ₇ /Zn ₂ V ₂ O ₆ (CZVO) Heterojunction for Solarâ€Driven Nonsacrificial Dye Degradation and Water Oxidation. Energy Technology, 2021, 9, 2100034.	1.8	27
297	Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air. Superlattices and Microstructures, 2008, 44, 506-513.	1.4	26
298	Fe-doped titanium dioxide synthesized: Photocatalytic activity and mineralization study for azo dye. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243, 17-22.	2.0	26
299	Improved Photocatalytic Hydrogen Production by Structure Optimized Nonstoichiometric Y ₂ Ti ₂ O ₇ . ChemCatChem, 2012, 4, 1819-1827.	1.8	26
300	Photocatalytic hydrogen production from biomass-derived compounds: a case study of citric acid. Environmental Technology (United Kingdom), 2016, 37, 2687-2693.	1.2	26
301	UV/Vis Light Induced Degradation of Oxytetracycline Hydrochloride Mediated by Co-TiO2 Nanoparticles. Molecules, 2020, 25, 249.	1.7	26
302	Free radical reactions of the phenothiazine, metiazinic acid. Journal of the Chemical Society Perkin Transactions II, 1981, , 890.	0.9	25
303	Treatment of Recalcitrant Organic Compounds in Oil Reclaiming Wastewater by Ozone/Hydrogen Peroxide and UV/Titanium Dioxide. Water Science and Technology, 1994, 29, 129-132.	1.2	25
304	Highly photoactive and stable TiO2 coatings on sintered glass. Applied Catalysis A: General, 2004, 277, 183-189.	2.2	25
305	Physical properties, stability, and photocatalytic activity of transparent TiO2/SiO2 films. Separation and Purification Technology, 2009, 67, 173-179.	3.9	25
306	Pt colloidal accommodated into mesoporous TiO2 films for photooxidation of acetaldehyde in gas phase. Chemical Engineering Journal, 2012, 203, 174-181.	6.6	25

#	Article	IF	CITATIONS
307	Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis. Physical Chemistry Chemical Physics, 2016, 18, 10719-10726.	1.3	25
308	Efficient visible light driven, mesoporous graphitic carbon nitrite based hybrid nanocomposite: With superior photocatalytic activity for degradation of organic pollutant in aqueous phase. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 342, 102-115.	2.0	25
309	One-Pot Fabrication of High Coverage PbS Quantum Dot Nanocrystal-Sensitized Titania Nanotubes for Photoelectrochemical Processes. Journal of Physical Chemistry C, 2018, 122, 13659-13668.	1.5	25
310	Understanding the degradation pathways of oxalic acid in different photocatalytic systems: Towards simultaneous photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 81-90.	2.0	25
311	Decoration of mesoporous graphite-like C3N4 nanosheets by NiS nanoparticle-driven visible light for hydrogen evolution. Applied Nanoscience (Switzerland), 2018, 8, 1587-1596.	1.6	25
312	Photocatalytic H ₂ Evolution from Oxalic Acid: Effect of Cocatalysts and Carbon Dioxide Radical Anion on the Surface Charge Transfer Mechanisms. ACS Applied Energy Materials, 2020, 3, 6678-6691.	2.5	25
313	Formation of a sulphur-sulphur bridged radical cation during the oxidation of 1,4-dithian by hydroxyl radicals. Journal of the Chemical Society Chemical Communications, 1975, , 238.	2.0	24
314	Solare Abwasserentgiftung. Nachrichten Aus Der Chemie, 1994, 42, 378-388.	0.0	24
315	A study of the kinetic solvent isotope effect on the destruction of microcystin-LR and geosmin using TiO2 photocatalysis. Applied Catalysis B: Environmental, 2011, 108-109, 1-5.	10.8	24
316	Photocatalytic degradation of oxalic and dichloroacetic acid on TiO2 coated metal substrates. Catalysis Today, 2013, 209, 84-90.	2.2	24
317	Mechanistic Features of the TiO ₂ Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stoppedâ€Flow Technique. ChemPhysChem, 2016, 17, 885-892.	1.0	24
318	Fractal Charge Carrier Kinetics in TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 24282-24291.	1.5	24
319	Ag ⁺ , Fe ³⁺ and Zn ²⁺ -intercalated cadmium(<scp>ii</scp>)-metal–organic frameworks for enhanced daylight photocatalysis. RSC Advances, 2017, 7, 51272-51280.	1.7	24
320	Pyridinium lead tribromide and pyridinium lead triiodide: quasi-one-dimensional perovskites with an optically active aromatic π-system. Dalton Transactions, 2018, 47, 16313-16319.	1.6	24
321	Effect of the TiO ₂ –ZnO Heterostructure on the Photoinduced Hydrophilic Conversion of TiO ₂ and ZnO Surfaces. Journal of Physical Chemistry C, 2019, 123, 8884-8891.	1.5	24
322	Synthesis, characterization and photocatalytic activity of LaNdZr2O7 supported SnSe nanocomposites for the degradation of Foron blue dye. Applied Surface Science, 2019, 463, 1019-1027.	3.1	24
323	Photoelectrochemistry of Ferrites: Theoretical Predictions vs. Experimental Results. Zeitschrift Fur Physikalische Chemie, 2020, 234, 719-776.	1.4	24
324	Detoxification and recycling of wastewater by solar-catalytic treatment. Water Science and Technology, 1997, 35, 149.	1.2	23

#	Article	IF	CITATIONS
325	Photocatalysed degradation of a herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide. Photochemical and Photobiological Sciences, 2003, 2, 151.	1.6	23
326	Characterization of a highly efficient N-doped TiO ₂ photocatalyst prepared via factorial design. New Journal of Chemistry, 2016, 40, 7846-7855.	1.4	23
327	Effect of the Degree of Inversion on the Electrical Conductivity of Spinel ZnFe ₂ O ₄ . ChemistrySelect, 2019, 4, 1232-1239.	0.7	23
328	Photocatalytic degradation of trinitrotoluene: reductive and oxidative pathways. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 191-199.	2.0	22
329	Solar-catalytic Treatment of an Industrial Wastewater. Zeitschrift Fur Physikalische Chemie, 1999, 213, 141-147.	1.4	22
330	Materials for all-solid-state thin-film rechargeable lithium batteries by sol-gel processing. Journal of Solid State Electrochemistry, 2002, 6, 498-501.	1.2	22
331	Use of microwave discharge electrodeless lamps (MDEL). Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 284-287.	2.0	22
332	TiO2 nanoparticles as electron pools: Single- and multi-step electron transfer processes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 9-17.	2.0	22
333	Light-Controlled ZrO2 Surface Hydrophilicity. Scientific Reports, 2016, 6, 34285.	1.6	22
334	Application of a novel triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for photocatalytic degradation of Linear Alkyl Benzene (LAB) industrial wastewater under visible light. Materials Science in Semiconductor Processing, 2018, 75, 193-205.	1.9	22
335	Self-cleaning properties of zirconium dioxide thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 397-405.	2.0	22
336	Photodegradation of Microcystin-LR Using Visible Light-Activated C/N-co-Modified Mesoporous TiO2 Photocatalyst. Materials, 2019, 12, 1027.	1.3	22
337	Phenothiazine radical-cations: electron transfer equilibria with iodide ions and the determination of one-electron redox potentials by pulse radiolysis. Journal of the Chemical Society Perkin Transactions II, 1983, , 1669.	0.9	21
338	Photocatalytic Treatment of an Industrial Wastewater in the Double-Skin Sheet Reactor. Chemical Engineering and Technology, 1999, 22, 931.	0.9	21
339	Semiconductor-mediated photocatalysed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension. Water Science and Technology, 2001, 44, 331-337.	1.2	21
340	Photochemical treatment of simulated dyehouse effluents by novel TiO2 photocatalysts: experience with the thin film fixed bed (TFFB) and double skin sheet (DSS) reactor. Water Science and Technology, 2001, 44, 171-178.	1.2	21
341	Primary Processes During the Photodeposition of Ag Clusters on TiO2 Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2007, 221, 329-348.	1.4	21
342	Zinc Oxide Photocatalysis: Influence of Iron and Titanium Doping and Origin of the Optimal Doping Ratio. ChemCatChem, 2013, 5, 774-778.	1.8	21

#	Article	IF	CITATIONS
343	Oxalic acid at the TiO 2 /water interface under UV(A) illumination: Surface reaction mechanisms. Journal of Catalysis, 2015, 322, 60-72.	3.1	21
344	Cold sprayed WO ₃ and TiO ₂ electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications. Dalton Transactions, 2017, 46, 12811-12823.	1.6	21
345	Photocatalytic activity and charge carrier dynamics of TiO ₂ powders with a binary particle size distribution. Physical Chemistry Chemical Physics, 2018, 20, 8119-8132.	1.3	21
346	Kinetic effects and oxidation pathways of sacrificial electron donors on the example of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over illuminated titanium dioxide. Catalysis Today, 2019, 335, 354-364.	2.2	21
347	Catalytic Role of TiO ₂ Terminal Oxygen Atoms in Liquidâ€Phase Photocatalytic Reactions: Oxidation of Aromatic Compounds in Anhydrous Acetonitrile. ChemPhysChem, 2014, 15, 2311-2320.	1.0	20
348	Chemoselective and highly efficient conversion of aromatic alcohols into aldehydes photo-catalyzed by Ag3PO4 in aqueous suspension under simulated sunlight. Catalysis Communications, 2015, 58, 34-39.	1.6	20
349	Visible-Light Photocatalysis with Mullite-Type Bi2(Al1–xFex)4O9: Striking the Balance between Bandgap Narrowing and Conduction Band Lowering. ACS Catalysis, 2018, 8, 8844-8855.	5.5	20
350	Pyrolysis conversion of metal organic frameworks to form uniform codoped C/N-Titania photocatalyst for H2 production through simulated solar light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113037.	2.0	20
351	Photoinduced electron transfer reaction of few selected organic systems in presence of titanium dioxide. Journal of Molecular Catalysis A, 2005, 234, 151-157.	4.8	19
352	Kinetic and Mechanistic Investigations of the Light Induced Formation of Gold Nanoparticles on the Surface of TiO ₂ . Chemistry - A European Journal, 2012, 18, 4314-4321.	1.7	19
353	Photogenerated Charge Carriers Dynamics on La- and/or Cr-Doped SrTiO ₃ Nanoparticles Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 1292-1302.	1.5	19
354	TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catalysis Today, 2021, 380, 3-15.	2.2	19
355	Photocatalytic H2 Production from Naphthalene by Various TiO2 Photocatalysts: Impact of Pt Loading and Formation of Intermediates. Catalysts, 2021, 11, 107.	1.6	19
356	TiO2(B)/anatase heterostructure nanofibers decorated with anatase nanoparticles as efficient photocatalysts for methanol oxidation. Journal of Molecular Catalysis A, 2016, 425, 55-60.	4.8	18
357	Comparing photocatalytic activities of commercially available iron-doped and iron-undoped aeroxide TiO2 P25 powders. Journal of Materials Science, 2017, 52, 6341-6348.	1.7	18
358	Novel Bioactive Co(II), Cu(II), Ni(II) and Zn(II) Complexes with Schiff Base Ligand Derived from Histidine and 1,3-Indandione: Synthesis, Structural Elucidation, Biological Investigation and Docking Analysis. Journal of Fluorescence, 2017, 27, 135-150.	1.3	18
359	Strong Transient Absorption of Trapped Holes in Anatase and Rutile TiO ₂ at High Laser Intensities. Journal of Physical Chemistry C, 2018, 122, 13979-13985.	1.5	18
360	The role of Au loading for visible-light photocatalytic activity of Au-TiO2 (anatase). Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 111-117.	2.0	18

#	Article	IF	CITATIONS
361	Effect of H2O and O2 on the Adsorption and Degradation of Acetaldehyde on Anatase Surfaces—An In Situ ATR-FTIR Study. Catalysts, 2018, 8, 417.	1.6	18
362	Photocatalytic Reforming of Aqueous Acetic Acid into Molecular Hydrogen and Hydrocarbons over Co-catalyst-Loaded TiO ₂ : Shifting the Product Distribution. Journal of Physical Chemistry C, 2018, 122, 12792-12809.	1.5	18
363	TiO2 nanoparticles with superior hydrogen evolution and pollutant degradation performance. International Journal of Hydrogen Energy, 2019, 44, 24162-24173.	3.8	18
364	Effect of the Degree of Inversion on the Photoelectrochemical Activity of Spinel ZnFe2O4. Catalysts, 2019, 9, 434.	1.6	18
365	Hybrid Organic–Inorganic Halide Postâ€Perovskite 3â€Cyanopyridinium Lead Tribromide for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2102338.	7.8	18
366	Controlled synthesis of Ag2O/g-C3N4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin. Ceramics International, 2021, 47, 31073-31083.	2.3	18
367	From Nano-Sized Particles to Commercial Products. , 1996, , 675-689.		17
368	Photocatalytic degradation of dimethyl terephthalate in aqueous suspensions of titanium dioxide. Research on Chemical Intermediates, 2003, 29, 35-50.	1.3	17
369	Photoinduced hydrophilic conversion of hydrated ZnO surfaces. Journal of Colloid and Interface Science, 2016, 466, 452-460.	5.0	17
370	Influence of the Dopant Concentration on the Photoelectrochemical Behavior of Al-Doped TiO ₂ . Journal of Physical Chemistry C, 2018, 122, 7975-7981.	1.5	17
371	Photodegradation of 4-aminoantipyrine over nano-titania heterojunctions using solar and LED irradiation sources. Journal of Environmental Chemical Engineering, 2019, 7, 102797.	3.3	17
372	Application of the Stopped Flow Technique to the TiO ₂ -Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O ₂ and H ₂ O ₂ as Electron Acceptors. Langmuir, 2015, 31, 6229-6236.	1.6	16
373	The role of nanoparticulate agglomerates in TiO2 photocatalysis: degradation of oxalic acid. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	16
374	TiO2/Fe3O4/Ag nanophotocatalysts in solar fuel production: New approach to using a flexible lightweight sustainable textile fabric. Journal of Cleaner Production, 2018, 196, 688-697.	4.6	16
375	Quantification of formaldehyde production during alkaline methanol electrooxidation. Electrochemistry Communications, 2019, 102, 57-62.	2.3	16
376	The effect of organic cations on the electronic, optical and luminescence properties of 1D piperidinium, pyridinium, and 3-hydroxypyridinium lead trihalides. Dalton Transactions, 2020, 49, 4390-4403.	1.6	16
377	Preparation, Characterization and Photocatalytic Activity of Nanosized ZnO for the Degradation of Rhodamine B Dye and Simulated Dyebath Effluent. Science of Advanced Materials, 2013, 5, 630-636.	0.1	16
378	Boosting the H2 Production Efficiency via Photocatalytic Organic Reforming: The Role of Additional Hole Scavenging System. Catalysts, 2021, 11, 1423.	1.6	16

#	Article	IF	CITATIONS
379	Photocatalytic reactors for treating water pollution with solar illumination. II: A simplified analysis for flow reactors. Chemical Engineering Science, 2003, 58, 2601-2615.	1.9	15
380	Determination of the photocatalytic deposition velocity. Chemical Engineering Journal, 2015, 261, 88-94.	6.6	15
381	Tailoring Composition and Material Distribution in Multicomponent Cryoaerogels for Application in Photocatalysis. ACS Applied Nano Materials, 2018, 1, 6123-6130.	2.4	15
382	Mechanistic Investigations of Photoelectrochemical Water and Methanol Oxidation on Well-Defined TiO ₂ Anatase (101) and Rutile (110) Surfaces. ACS Applied Energy Materials, 2019, 2, 5308-5318.	2.5	15
383	H2 production using CuS/g-C3N4 nanocomposites under visible light. Applied Nanoscience (Switzerland), 2020, 10, 223-232.	1.6	15
384	Cytotoxicity of titanium and silicon dioxide nanoparticles. Journal of Physics: Conference Series, 2009, 170, 012022.	0.3	14
385	Toxicological Issues of Nanoparticles Employed in Photocatalysis. Green, 2011, 1, .	0.4	14
386	Dependences of ZnO Photoinduced Hydrophilic Conversion on Light Intensity and Wavelengths. Journal of Physical Chemistry C, 2015, 119, 9824-9828.	1.5	14
387	Quenching Effects of Graphene Oxides on the Fluorescence Emission and Reactive Oxygen Species Generation of Chloroaluminum Phthalocyanine. Journal of Physical Chemistry A, 2018, 122, 6842-6851.	1.1	14
388	Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls. Catalysis Today, 2019, 326, 60-67.	2.2	14
389	Photodegradation of Herbicide Imazapyr and Phenol over Mesoporous Bicrystalline Phases TiO2: A Kinetic Study. Catalysts, 2019, 9, 640.	1.6	14
390	Titanium-dioxide-mediated photocatalysis reaction of three selected pesticide derivatives. Research on Chemical Intermediates, 2004, 30, 663-672.	1.3	13
391	Photocatalytic reactors for treating water pollution with solar illumination. III: a simplified analysis for recirculating reactors. Solar Energy, 2004, 77, 471-489.	2.9	13
392	Photocatalytic Detoxification of Water and Air. , 0, , 367-423.		13
393	Durability of Ag- Photocatalysts Assessed for the Degradation of Dichloroacetic Acid. International Journal of Photoenergy, 2008, 2008, 1-11.	1.4	13
394	Effect of polar and movable (OH or NH2groups) on the photocatalytic H2production of alkyl-alkanolamine: a comparative study. Environmental Technology (United Kingdom), 2015, 36, 2190-2197.	1.2	13
395	Facile ultrasound assisted synthesis of monodisperse spherical CuMn(OH) 3 NO 3 nanoparticles for energy storage applications. Journal of Alloys and Compounds, 2017, 699, 745-750.	2.8	13
396	Laser-flash-photolysis-spectroscopy: a nondestructive method?. Faraday Discussions, 2017, 197, 505-516.	1.6	13

#	Article	IF	CITATIONS
397	Surface modification of Na-K 2 Ti 6 O 13 photocatalyst with Cu(II)-nanocluster for efficient visible-light-driven photocatalytic activity. Materials Letters, 2018, 220, 50-53.	1.3	13
398	Light-Induced Reactions of Chlorpromazine in the Presence of a Heterogeneous Photocatalyst: Formation of a Long-Lasting Sulfoxide. Catalysts, 2019, 9, 627.	1.6	13
399	Changes in the solid-state properties of bismuth iron oxide during the photocatalytic reformation of formic acid. Catalysis Today, 2019, 326, 22-29.	2.2	13
400	Photoactive Heterostructures: How They Are Made and Explored. Catalysts, 2021, 11, 294.	1.6	13
401	Assessing the photocatalytic oxygen evolution reaction of BiFeO3 loaded with IrO2 nanoparticles as cocatalyst. Solar Energy Materials and Solar Cells, 2021, 232, 111349.	3.0	13
402	Formation of Active Catalysts in the System: Chlorocupratesâ^'CCl ₄ â^' <i>n</i> -C ₁₀ H ₂₂ . Journal of Physical Chemistry A, 2009, 113, 10219-10223.	1.1	12
403	Symbiotic Interaction of Amalgamated Photocatalysts with Improved Day Light Utilisation and Charge Separation. ChemistrySelect, 2017, 2, 84-89.	0.7	12
404	Kinetic and mechanistic features on the reaction of stored TiO2 electrons with Hg (II), Pb (II) and Ni (II) in aqueous suspension. Arabian Journal of Chemistry, 2019, 12, 5134-5141.	2.3	12
405	Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate. Journal of Alloys and Compounds, 2021, 872, 159746.	2.8	12
406	A Novel Luminescent Functionalized Siloxane Polymer. Journal of Physical Chemistry B, 2003, 107, 11583-11588.	1.2	11
407	Influence of the Metal Work Function on the Photocatalytic Properties of TiO ₂ Layers on Metals. ChemPhysChem, 2015, 16, 2670-2679.	1.0	11
408	Surface Interactions between Imazapyr and the TiO ₂ Surface: An <i>in Situ</i> ATR-FTIR Study. Journal of Physical Chemistry C, 2017, 121, 4293-4303.	1.5	11
409	Tailoring the Photoelectrochemical Activity of TiO ₂ Electrodes by Multilayer Screenâ€Printing. ChemCatChem, 2019, 11, 6439-6450.	1.8	11
410	Determination of the quantum yield of a heterogeneous photocatalytic reaction employing a black body photoreactor. Catalysis Today, 2020, 355, 698-703.	2.2	11
411	MgFe2O4 decoration of g-C3N4 nanosheets to enhance CIP oxidation in visible-light photocatalysis. Optical Materials, 2021, 121, 111598.	1.7	11
412	Photocatalytic H2 production and degradation of aqueous 2-chlorophenol over B/N-graphene-coated Cu0/TiO2: A DFT, experimental and mechanistic investigation. Journal of Environmental Management, 2022, 311, 114822.	3.8	11
413	Photocatalyzed reaction of indole in an aqueous suspension of titanium dioxide. Research on Chemical Intermediates, 2010, 36, 121-125.	1.3	10
414	Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity. Thin Solid Films, 2014, 556, 168-173.	0.8	10

#	Article	IF	CITATIONS
415	In vitro toxicological nanoparticle studies under flow exposure. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	10
416	Impact of strength and size of donors on the optoelectronic properties of D–π–A sensitizers. RSC Advances, 2016, 6, 37347-37361.	1.7	10
417	Highly Selective Photocatalytic Reduction of o-Dinitrobenzene to o-Phenylenediamine over Non-Metal-Doped TiO2 under Simulated Solar Light Irradiation. Catalysts, 2018, 8, 641.	1.6	10
418	Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1469-1493.	1.4	10
419	Photoelectrochemical Behavior of the Ternary Heterostructured Systems CdS/WO3/TiO2. Catalysts, 2019, 9, 999.	1.6	10
420	Dynamics of Photogenerated Charge Carriers in TiO2/MoO3, TiO2/WO3 and TiO2/V2O5 Photocatalysts with Mosaic Structure. Catalysts, 2020, 10, 1022.	1.6	10
421	Rapid photodegradation mechanism enabled by broad-spectrum absorbing black anatase and reduced graphene oxide nanocomposites. Applied Surface Science, 2022, 575, 151718.	3.1	10
422	Antenna Mechanism and De-Aggregation Concept: Novel Mechanistic Principles for Photocatalysis. Materials Science Forum, 2007, 544-545, 17-22.	0.3	9
423	Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites. Journal of Physics Condensed Matter, 2019, 31, 394001.	0.7	9
424	TiO2-reduced graphene oxide nanocomposites: Microsecond charge carrier kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112112.	2.0	9
425	Titanium Dioxide Nanoparticles and Nanostructures. Current Inorganic Chemistry, 2012, 2, 94-114.	0.2	9
426	Design and synthesis of TiO2/C nanosheets with a directional cascade carriers transfer. Chemical Science, 0, , .	3.7	9
427	Evaluation of the photocatalytic (visible-light) activity of cold gas sprayed TiO2layers on metal sheets. Physica Status Solidi - Rapid Research Letters, 2014, 8, 596-599.	1.2	8
428	Catalytic role of bridging oxygens in TiO ₂ liquid phase photocatalytic reactions: analysis of H ₂ ¹⁶ O photooxidation on labeled Ti ¹⁸ O ₂ . Catalysis Science and Technology, 2017, 7, 902-910.	2.1	8
429	Catalysis for Fuels: general discussion. Faraday Discussions, 2017, 197, 165-205.	1.6	8
430	Reaction Rate Study of the Photocatalytic Degradation of Dichloroacetic Acid in a Black Body Reactor. Catalysts, 2019, 9, 635.	1.6	8
431	Effect of Sc3+/V5+ Co-Doping on Photocatalytic Activity of TiO2. Topics in Catalysis, 2021, 64, 817-823.	1.3	8
432	Photoinduced H2 Evolution by Hexaniobate Sheets Grafted with Metal Ions: The Fate of Photogenerated Carriers. ACS Applied Energy Materials, 2021, 4, 3681-3692.	2.5	8

#	Article	IF	CITATIONS
433	Isotope Effects in Photocatalysis: An Underexplored Issue. ACS Omega, 2021, 6, 11113-11121.	1.6	8
434	14C-trinitrotoluene: synthesis and photocatalytic degradation. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 337-343.	0.5	7
435	Titanium-dioxide-mediated photocatalysed reaction of selected organic systems. Research on Chemical Intermediates, 2005, 31, 807-817.	1.3	7
436	Improved photocatalytic performance of rutile TiO ₂ . Physica Status Solidi - Rapid Research Letters, 2011, 5, 92-94.	1.2	7
437	Analysis methods for meso- and macroporous silicon etching baths. Nanoscale Research Letters, 2012, 7, 398.	3.1	7
438	Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics. , 0, , .		7
439	From Ideal Reactor Concepts to Reality: The Novel Drum Reactor for Photocatalytic Wastewater Treatment. International Journal of Chemical Reactor Engineering, 2013, 11, 621-632. Effects of Nonstoichiometry and Cocatalyst Loading on the Photocatalytic Hydrogen Production	0.6	7
440	with (<scp><scp>Y</scp></scp> _{1.5} <scp>Bi</scp> _{0.5}) _{1â^'<i>x</i>and (<scp><scp>YBi</scp></scp>)_{1â^'<i>x</i>}<scp><scp>Ti</scp></scp>} 2 <scp>O</scp>	1.9	/
441	Pyrochlores. Journal of the American Ceramic Society, 2013, 96, 634-642. Iterative Cellular Screening System for Nanoparticle Safety Testing. Journal of Nanomaterials, 2015, 2015, 1-16.	1.5	7
442	Designing new catalysts for synthetic fuels: general discussion. Faraday Discussions, 2017, 197, 353-388.	1.6	7
443	Hydrogen Production by Heterogeneous Photocatalysis. , 2018, , 413-419.		7
444	Regarding the Nature of Charge Carriers Formed by UV or Visible Light Excitation of Carbon-Modified Titanium Dioxide. Catalysts, 2019, 9, 697.	1.6	7
445	A Comparative Study of Microcystin-LR Degradation by UV-A, Solar and Visible Light Irradiation Using Bare and C/N/S-Modified Titania. Catalysts, 2019, 9, 877.	1.6	7
446	Isotopic studies on the degradation of acetaldehyde on anatase surfaces. Catalysis Today, 2020, 340, 318-322.	2.2	7
447	A Selective Synthesis of TaON Nanoparticles and Their Comparative Study of Photoelectrochemical Properties. Catalysts, 2020, 10, 1128.	1.6	7
448	Photomineralization of untreated wastewater by a novel LaCeZr2O7–SnSe nanocomposite as a visible light driven heterogeneous photocatalyst. Solid State Sciences, 2020, 106, 106305.	1.5	7
449	Dynamics of photoinduced bulk and surface reactions involving semiconductors characterized by time resolved spectroscopy techniques (2015–2018). Photochemistry, 2019, , 122-158.	0.2	7
450	Influence of inorganic additives on the photocatalytic removal of nitric oxide and on the charge carrier dynamics of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 142-151.	2.0	6

#	Article	IF	CITATIONS
451	A Method to Compare the Activities of Semiconductor Photocatalysts in Liquidâ^'Solid Systems. ChemPhotoChem, 2018, 2, 948-951.	1.5	6
452	Transmission IR cell for atmosphere-controlled studies of photoprocesses on powdered high surface area materials. Review of Scientific Instruments, 2019, 90, 105113.	0.6	6
453	Twoâ€Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO ₂ Conversion. Angewandte Chemie, 2019, 131, 8187-8192.	1.6	6
454	Photo-catalytic destruction of acetaldehyde using cobalt, copper co-doped titania dioxide nanoparticles beneath Visible light. Applied Nanoscience (Switzerland), 2020, 10, 931-939.	1.6	6
455	Evaluating carbon dots as electron mediators in photochemical and photocatalytic processes of NiFe2O4. APL Materials, 2020, 8, 031105.	2.2	6
456	UV-induced alteration of luminescence chromaticity of Ln-based MOF-76. Journal of Luminescence, 2021, 235, 117970.	1.5	6
457	Response to Comment on "Formation of Nitroaromatic Compounds in Advanced Oxidation Processes:Â Photolysis versus Photocatalysis― Environmental Science & Technology, 1999, 33, 3282-3282.	4.6	5
458	Semiconductor Mediated Photocatalysed Degradation of a Pesticide Derivative, Acephate in Aqueous Suspensions of Titanium Dioxide. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	5
459	Mechanisms in Heterogeneous Photocatalysis. , 2011, , 1-5.		5
460	Effect of flowrate, photocatalyst loading and illumination conditions on the photocatalytic disinfection of recombinant <i>Escherichia coli</i> . Materials Research Innovations, 2015, 19, 20-23.	1.0	5
461	Synthesis of metal-free functionalized g-C3N4 nanosheets for enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2021, 9, 106389.	3.3	5
462	CHAPTER 2. Understanding the Chemistry of Photocatalytic Processes. RSC Energy and Environment Series, 2016, , 29-50.	0.2	5
463	Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings. Catalysts, 2021, 11, 1424.	1.6	5
464	Photocatalytic reactors for treating water pollution with solar illumination: A simplified analysis for n-steps flow reactors with recirculation. Solar Energy, 2005, 79, 262-269.	2.9	4
465	Untersuchungen zur Zytotoxizitävon photokatalytisch aktiven Titandioxidâ€Nanopartikeln. Chemie-Ingenieur-Technik, 2010, 82, 335-341.	0.4	4
466	The Influence of Irradiance and Humidity on the Photocatalytic Conversion of Nitrogen(II) Oxide. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	4
467	In Situ ATR-FTIR Investigation of the Effects of H ₂ O and D ₂ O Adsorption on the TiO ₂ Surface. ECS Transactions, 2017, 75, 101-113.	0.3	4
468	Irreversible surface changes upon n-type doping – A photoelectrochemical study on rutile single crystals. Electrochimica Acta, 2018, 280, 278-289.	2.6	4

#	Article	IF	CITATIONS
469	Hybrid lead triiodide perovskites with unsaturated heterocyclic cations containing N, O, and S atoms: Ab initio study. Journal of Solid State Chemistry, 2020, 282, 121082.	1.4	4
470	Effect of Cu2O Substrate on Photoinduced Hydrophilicity of TiO2 and ZnO Nanocoatings. Nanomaterials, 2021, 11, 1526.	1.9	4
471	Photocatalysis as an Auspicious Synthetic Route Towards Nitrogen Containing Organic Compounds. Current Organic Chemistry, 2013, 17, 2482-2502.	0.9	4
472	Photocatalytic water treatment: fundamental knowledge required for its practical application. Water Science and Technology, 2004, 49, 135-40.	1.2	4
473	Effect of the Heterovalent Doping of TiO2 with Sc3+ and Nb5+ on the Defect Distribution and Photocatalytic Activity. Catalysts, 2022, 12, 484.	1.6	4
474	Photocatalytic Degradation of Methylene Blue on Fixed Powder Layers: Which Limitations are to be Considered?. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	3
475	Influence of the interdependency between matrix material and pore system on the small angle X-ray scattering in ordered mesoporous materials. Microporous and Mesoporous Materials, 2011, 143, 277-283.	2.2	3
476	Photocatalytic performance of S doped TiO ₂ in relation to processing conditions: calcination temperature and heating rate. Materials Research Innovations, 2011, 15, 415-421.	1.0	3
477	Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges. Nanostructure Science and Technology, 2014, , 41-74.	0.1	3
478	Solar Energy Conversion by Nanostructured TiO2. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	3
479	Mechanisms in Heterogeneous Photocatalysis: Titania under UV and Visible Light Illumination. , 2016, , .		3
480	Stable anodes for lithium ion batteries made of self-organized mesoporous silicon. Semiconductor Science and Technology, 2016, 31, 014007.	1.0	3
481	Modulating optoelectronic properties of organo-metal halide perovskites with unsaturated heterocyclic cations via ring substitution. Journal of Physics and Chemistry of Solids, 2019, 135, 109078.	1.9	3
482	Chapter 6. Self-cleaning Coatings on Polymeric Substrates. RSC Smart Materials, 2016, , 142-165.	0.1	3
483	Photochemical and Photocatalytic Detoxification of Reactive Dyebath Wastewater by the Fenton's Reagent and Novel TiO2 Powders. , 2000, , 293-303.		3
484	Construction of Visible Light Responsive CdSe/g-C ₃ N ₄ Nanocomposites for H ₂ Production. Nanoscience and Nanotechnology Letters, 2019, 11, 1281-1291.	0.4	3
485	Metronidazole (Flagyl), misonidazole (Ro 07-0582), iron, zinc and sulphur compounds in cancer therapy. The British Journal of Cancer Supplement, 1978, 3, 16-9.	0.1	3
486	Mechanisms of Photocatalysis: The Reductive Degradation of Tetrachloromethane in Aqueous Titanium Dioxide Suspensions. Journal of Advanced Oxidation Technologies, 1996, 1, .	0.5	2

#	Article	IF	CITATIONS
487	Synthesis of TiO2/Au Nanocomposites via Sol-Gel Process for Photooxidation of Methanol. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	2
488	Synthesis and photocatalytic activity of boron-doped TiO2 in aqueous suspensions under UV-A irradiation. Water Science and Technology, 2010, 61, 2501-2506.	1.2	2
489	The Application of Semiconductor Photocatalysis for the Removal of Cyanotoxins from Water and Design Concepts for Solar Photocatalytic Reactors for Large Scale Water Treatment. , 2013, , 395-415.		2
490	Understanding charge transfer processes on metal oxides: a laser-flash-photolysis study. Proceedings of SPIE, 2016, , .	0.8	2
491	Spectroscopic analysis of proton exchange during the photocatalytic decomposition of aqueous acetic acid: an isotopic study on the product distribution and reaction rate. Catalysis Science and Technology, 2018, 8, 5886-5899.	2.1	2
492	Elastic, phononic, magnetic and electronic properties of quasi-one-dimensional PbFeBO4. Journal of Materials Science, 2019, 54, 13579-13593.	1.7	2
493	Novel hybrid semiconducting lead and tin halide perovskites with saturated heterocyclic cations (CH2)nPH2+ and (CH2)nSH+, (n=2–6): Ab initio study. Materials Chemistry and Physics, 2019, 229, 387-391.	2.0	2
494	Charge Carriers in Commercial Photocatalysts: Fractal Kinetics and Effect of "Inert―Additives. Topics in Catalysis, 2021, 64, 737-747.	1.3	2
495	Preparation and Characterization of Novel Mixed Titanium/Iron Oxide Photocatalysts for the Detoxification of Polluted Aquifers. , 1992, , 397-429.		2
496	CHAPTER 3. Current Issues Concerning the Mechanism of Pristine TiO2 Photocatalysis and the Effects on Photonic Crystal Nanostructures. RSC Energy and Environment Series, 2016, , 51-79.	0.2	2
497	Photocatalytic Detoxification of Polluted Aquifers: Novel Catalysts and Solar Applications. , 2018, , 349-368.		2
498	Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts. , 2010, , 371-442.		2
499	Efficient Photocatalytic H ₂ Evolution by Hexaniobate Nanosheets Grafted with Copper Nanoclusters. ChemPhotoChem, 2022, 6, .	1.5	2
500	Highly Stable Au/Hexaniobate Nanocomposite Prepared by a Green Intercalation Method for Photoinduced H ₂ Evolution Applications. ACS Applied Energy Materials, 2022, 5, 8371-8380.	2.5	2
501	Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon. Semiconductor Science and Technology, 2017, 32, 045007.	1.0	1
502	Novel photocatalysts: general discussion. Faraday Discussions, 2017, 197, 533-546.	1.6	1
503	Catalysis Letters: Editorial. Catalysis Letters, 2017, 147, 2473-2474.	1.4	1
504	Photoactivity of Titanium Dioxide Foams. International Journal of Photoenergy, 2018, 2018, 1-9.	1.4	1

#	Article	IF	CITATIONS
505	Novel 3D photoactive direct bandgap perovskites CsBiPbX6: Ab initio structure and electronic properties. Computational Materials Science, 2020, 183, 109819.	1.4	1
506	Importance of Surfaces and Many-Body Absorption Spectra for C-Doped TiO2 Photocatalysts. Journal of Physical Chemistry C, 0, , .	1.5	1
507	Photocatalytic Formation of Sulfur-Centered Radicals by One-Electron Redox Processes on Semiconductor Surfaces. , 1990, , 103-120.		1
508	Photocatalytic Detoxification at high Photon Flux and elevated Temperatures. , 1992, , 113-129.		1
509	Solar-catalytic Treatment of an Industrial Wastewater. Zeitschrift Fur Physikalische Chemie, 1998, 1, 339-345.	1.4	1
510	Comparison Between Ag@TiO ₂ Core-Shell and Yolk-Shell Structures for Degradation of Gaseous Toluene Beneath Visible Light. Nanoscience and Nanotechnology Letters, 2019, 11, 1226-1238.	0.4	1
511	The Study of Photoactive Materials. Reviews and Advances in Chemistry, 2020, 10, 73-111.	0.2	1
512	Superior Vis light photo-catalytic efficiency for remediation of gaseous toluene using FeWO4/g-C3N4 direct Z system. , 0, 182, 332-341.		1
513	Thermo-photodynamic perspective of the simultaneous S-Scheme ternary heterostructure through Ag3VO4 shuttle for the increased photo-redox ability. Applied Materials Today, 2022, 27, 101435.	2.3	1
514	Semiconductor-Mediated Photocatalysed Degradation of Various Pesticide Derivatives and Other Priority Organic Pollutants in Aqueous Suspensions. Materials Science Forum, 2005, 486-487, 61-64.	0.3	0
515	MESOPOROUS LAYERS OF TIO ₂ AS HIGHLY EFFICIENT PHOTOCATALYSTS FOR CLEAN ENVIRONMENT. , 2008, , .		0
516	Comparison between two different exposure methods, via culture medium and exposure at the air–liquid interface, of ZnO nanoparticles to A-549 cells. Toxicology Letters, 2010, 196, S285.	0.4	0
517	(Green) Photocatalytic Synthesis Employing Nitroaromatic Compounds. Materials Research Society Symposia Proceedings, 2011, 1352, 119.	0.1	0
518	Preface for Special Topic: Photocatalysis. APL Materials, 2015, 3, 103801.	2.2	0
519	Efficient Mesoporous Semiconductor Materials for Environmental Applications. Handbook of Environmental Chemistry, 2015, , 221-266.	0.2	0
520	Photocatalytic evolution of molecular hydrogen and oxygen over La-doped NaTaO3particles: Effect of different cocatalysts (Presentation Recording). , 2015, , .		0
521	Surface and Mechanical Properties ofÂNanoparticulate Resin Coatings andÂTheirÂToxicological Characterization. Chemical Engineering and Technology, 2017, 40, 376-384.	0.9	Ο
522	Reprint of "Studies on the adsorption and photocatalytic degradation of an EuIII(TTFA)3(MePhTerpy) complex on the TiO2 surface― Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 91-96.	2.0	0

#	Article	IF	CITATIONS
523	Studies on the adsorption and photocatalytic degradation of an EuIII(TTFA)3(MePhTerpy) complex on the TiO2 surface. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 303-308.	2.0	0
524	Photocatalytic Hydrogen Evolution Over Pt/Co-TiO2 Photocatalysts. Journal of Photocatalysis, 2021, 2, 35-48.	0.4	0
525	Editorial: Special Issue on Photocatalytic Nanocomposite Materials (PNMs). Catalysts, 2021, 11, 587.	1.6	0
526	Photocatalysed Degradation of a Herbicide Derivative, Maleic Hydrazide in Aqueous Suspensions of TiO2. Journal of Advanced Oxidation Technologies, 2004, 7, .	0.5	0
527	Effect of the Degree of Inversion on the Photocatalytic Activity of Spinel ZnFe2O4. , 0, , .		0
528	7th International Conference on Semiconductor Photochemistry (SP7). Topics in Catalysis, 2021, 64, 735-736.	1.3	0
529	Construction of mesoporous CdO/g-C3N4 nanocomposites for photooxidation of ciprofloxacin under visible light exposure. Optical Materials, 2021, 122, 111816.	1.7	0
530	Effect of the Degree of Inversion on the Photocatalytic Activity of Spinel ZnFe2O4. , 0, , .		0