
Jianbo Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093720/publications.pdf Version: 2024-02-01

ΙΙΔΝΙΚΟ ΤΑΝ

#	Article	IF	CITATIONS
1	Photo-PISA: Shedding Light on Polymerization-Induced Self-Assembly. ACS Macro Letters, 2015, 4, 1249-1253.	2.3	324
2	Enzyme-Assisted Photoinitiated Polymerization-Induced Self-Assembly: An Oxygen-Tolerant Method for Preparing Block Copolymer Nano-Objects in Open Vessels and Multiwell Plates. Macromolecules, 2017, 50, 5798-5806.	2.2	127
3	Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Polymer Chemistry, 2016, 7, 2372-2380.	1.9	102
4	An insight into aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) for the preparation of diblock copolymer nano-objects. Polymer Chemistry, 2017, 8, 1315-1327.	1.9	101
5	Photoinitiated Polymerization-Induced Self-Assembly via Visible Light-Induced RAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 205-212.	2.3	84
6	Alcoholic Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): A Fast Route toward Poly(isobornyl acrylate)-Based Diblock Copolymer Nano-Objects. ACS Macro Letters, 2016, 5, 894-899.	2.3	79
7	Facile Preparation of CO ₂ â€Responsive Polymer Nanoâ€Objects via Aqueous Photoinitiated Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA). Macromolecular Rapid Communications, 2017, 38, 1600508.	2.0	76
8	Lowâ€Temperature Synthesis of Thermoresponsive Diblock Copolymer Nanoâ€Objects via Aqueous Photoinitiated Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA) using Thermoresponsive Macroâ€RAFT Agents. Macromolecular Rapid Communications, 2016, 37, 1434-1440.	2.0	70
9	Thermoresponsive Block Copolymer Vesicles by Visible Light-Initiated Seeded Polymerization-Induced Self-Assembly for Temperature-Regulated Enzymatic Nanoreactors. ACS Macro Letters, 2020, 9, 533-539.	2.3	70
10	Polymerization-Induced Self-Assembly of Homopolymer and Diblock Copolymer: A Facile Approach for Preparing Polymer Nano-Objects with Higher-Order Morphologies. ACS Macro Letters, 2017, 6, 298-303.	2.3	68
11	Enzymeâ€PISA: An Efficient Method for Preparing Wellâ€Defined Polymer Nanoâ€Objects under Mild Conditions. Macromolecular Rapid Communications, 2018, 39, e1700871.	2.0	67
12	Polymerization-Induced Self-Assembly via RAFT-Mediated Emulsion Polymerization of Methacrylic Monomers. Macromolecules, 2019, 52, 7468-7476.	2.2	67
13	Expanding the Scope of Polymerizationâ€Induced Selfâ€Assembly: Recent Advances and New Horizons. Macromolecular Rapid Communications, 2021, 42, e2100498.	2.0	66
14	Photoinitiated Polymerizationâ€Induced Selfâ€Assembly of Glycidyl Methacrylate for the Synthesis of Epoxyâ€Functionalized Block Copolymer Nanoâ€Objects. Macromolecular Rapid Communications, 2017, 38, 1700195.	2.0	63
15	100th Anniversary of Macromolecular Science Viewpoint: Heterogenous Reversible Deactivation Radical Polymerization at Room Temperature. Recent Advances and Future Opportunities. ACS Macro Letters, 2019, 8, 1660-1669.	2.3	60
16	Room Temperature Synthesis of Self-Assembled AB/B and ABC/BC Blends by Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) in Water. Macromolecules, 2018, 51, 7396-7406.	2.2	59
17	Photoinitiated RAFT Dispersion Polymerization: A Straightforward Approach toward Highly Monodisperse Functional Microspheres. Macromolecules, 2012, 45, 8790-8795.	2.2	56
18	Expanding the Scope of Polymerization-Induced Self-Assembly: Z-RAFT-Mediated Photoinitiated Dispersion Polymerization. ACS Macro Letters, 2018, 7, 255-262.	2.3	56

JIANBO TAN

#	Article	IF	CITATIONS
19	Enzyme catalysis-induced RAFT polymerization in water for the preparation of epoxy-functionalized triblock copolymer vesicles. Polymer Chemistry, 2018, 9, 4908-4916.	1.9	55
20	Two Polymersome Evolution Pathways in One Polymerization-Induced Self-Assembly (PISA) System. Macromolecules, 2020, 53, 8982-8991.	2.2	53
21	Rapid synthesis of well-defined all-acrylic diblock copolymer nano-objects <i>via</i> alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA). Polymer Chemistry, 2017, 8, 6853-6864.	1.9	52
22	Seeded Photoinitiated Polymerization-Induced Self-Assembly: Cylindrical Micelles with Patchy Structures Prepared via the Chain Extension of a Third Block. ACS Macro Letters, 2019, 8, 955-961.	2.3	46
23	Efficient Photoinitiated Polymerization-Induced Self-Assembly with Oxygen Tolerance through Dual-Wavelength Type I Photoinitiation and Photoinduced Deoxygenation. Macromolecules, 2020, 53, 1212-1223.	2.2	45
24	Structural Difference in Macro-RAFT Agents Redirects Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 1102-1109.	2.3	44
25	Facile preparation of hybrid vesicles loaded with silica nanoparticles via aqueous photoinitiated polymerization-induced self-assembly. RSC Advances, 2017, 7, 23114-23121.	1.7	39
26	Ketoneâ€Functionalized Polymer Nanoâ€Objects Prepared via Photoinitiated Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA) Using a Poly(diacetone acrylamide)â€Based Macroâ€RAFT Agent. Macromolecular Rapid Communications, 2019, 40, e1800296.	2.0	39
27	Synthesis of PMMA Microparticles with a Narrow Size Distribution by Photoinitiated RAFT Dispersion Polymerization with a Macromonomer as the Stabilizer. Macromolecules, 2014, 47, 6856-6866.	2.2	38
28	R-RAFT or Z-RAFT? Well-Defined Star Block Copolymer Nano-Objects Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules, 2020, 53, 1557-1566.	2.2	38
29	Synthesis of Highly Monodisperse Surface-Functional Microspheres by Photoinitiated RAFT Dispersion Polymerization Using Macro-RAFT Agents. Macromolecules, 2013, 46, 8441-8448.	2.2	37
30	Open-air preparation of cross-linked CO ₂ -responsive polymer vesicles by enzyme-assisted photoinitiated polymerization-induced self-assembly. Chemical Communications, 2019, 55, 11920-11923.	2.2	37
31	Type I Photoinitiator-Functionalized Block Copolymer Nanoparticles Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. ACS Macro Letters, 2021, 10, 297-306.	2.3	37
32	Switching between Thermal Initiation and Photoinitiation Redirects RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules, 2021, 54, 2948-2959.	2.2	37
33	Morphology-controllable synthesis of tetragonal LaVO ₄ nanostructures. CrystEngComm, 2010, 12, 1079-1085.	1.3	35
34	PMMA Microspheres with Embedded Lanthanide Nanoparticles by Photoinitiated Dispersion Polymerization with a Carboxy-Functional Macro-RAFT Agent. Macromolecules, 2015, 48, 3629-3640.	2.2	33
35	Organic–inorganic hybrid nanomaterials prepared <i>via</i> polymerization-induced self-assembly: recent developments and future opportunities. Polymer Chemistry, 2022, 13, 2554-2569.	1.9	32
36	Photoinitiated Seeded RAFT Dispersion Polymerization: A Facile Method for the Preparation of Epoxyâ€Functionalized Triblock Copolymer Nanoâ€Objects. Macromolecular Rapid Communications, 2018, 39, e1800473.	2.0	31

Jianbo Tan

#	Article	IF	CITATIONS
37	Better RAFT Control is Better? Insights into the Preparation of Monodisperse Surface-Functional Polymeric Microspheres by Photoinitiated RAFT Dispersion Polymerization. Macromolecules, 2019, 52, 7267-7277.	2.2	31
38	Efficient Preparation of Branched Block Copolymer Assemblies by Photoinitiated RAFT Self-Condensing Vinyl Dispersion Polymerization. Macromolecules, 2020, 53, 9725-9735.	2.2	29
39	Monodisperse highly cross-linked "living―microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Advances, 2015, 5, 18922-18931.	1.7	26
40	Utilization of Poor RAFT Control in Heterogeneous RAFT Polymerization. Macromolecules, 2021, 54, 4669-4681.	2.2	26
41	Photoinitiated dispersion polymerization using polyurethane based macrophotoinitiator as stabilizer and photoinitiator. Polymer, 2010, 51, 3394-3401.	1.8	25
42	Monodisperse poly(methyl methacrylate) microspheres with tunable carboxyl groups on the surface obtained by photoinitiated RAFT dispersion polymerization. Chemical Communications, 2019, 55, 7848-7851.	2.2	25
43	Photosynthesis of poly(glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites. Journal of Materials Science, 2016, 51, 9455-9471.	1.7	23
44	Combining the power of heat and light: temperature-programmed photoinitiated RAFT dispersion polymerization to tune polymerization-induced self-assembly. Polymer Chemistry, 2019, 10, 3902-3911.	1.9	23
45	Adding a solvophilic comonomer to the polymerization-induced self-assembly of block copolymer and homopolymer: a cooperative strategy for preparing large compound vesicles. RSC Advances, 2017, 7, 46069-46081.	1.7	22
46	One-stage photoinitiated RAFT dispersion polymerization – Reaction parameters for achieving high particle size uniformity. Polymer, 2014, 55, 2380-2388.	1.8	20
47	Z-type and R-type macro-RAFT agents in RAFT dispersion polymerization – another mechanism perspective on PISA. Polymer Chemistry, 2016, 7, 3756-3765.	1.9	19
48	Simultaneous Synthesis and Selfâ€Assembly of Bottlebrush Block Copolymers at Room Temperature via Photoinitiated RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2022, 43, e2100921.	2.0	15
49	Oneâ€Step Preparation of Thermoâ€Responsive Poly(<i>N</i> â€isopropylacrylamide)â€Based Block Copolymer Nanoparticles by Aqueous Photoinitiated Polymerizationâ€induced Selfâ€Assembly. Macromolecular Rapid Communications, 2021, 42, e2100201.	2.0	14
50	In situ cross-linking in RAFT-mediated emulsion polymerization: Reshaping the preparation of cross-linked block copolymer nano-objects by polymerization-induced self-assembly. Polymer, 2021, 230, 124095.	1.8	14
51	Oxidation-responsive framboidal triblock copolymer vesicles prepared by photoinitiated RAFT seeded emulsion polymerization. Chinese Chemical Letters, 2023, 34, 107344.	4.8	13
52	Facile Preparation of Monodisperse Poly(2â€hydroxyethyl acrylate)â€Grafted Poly(methyl methacrylate) Microspheres via Photoinitiated RAFT Dispersion Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 1723-1728.	1.1	12
53	How the Reactive End Group of Macroâ€RAFT Agent Affects RAFTâ€Mediated Emulsion Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2021, 42, e2100333.	2.0	12
54	Block Copolymer Vesicles with Tunable Membrane Thicknesses and Compositions Prepared by Aqueous Seeded Photoinitiated Polymerization-Induced Self-Assembly at Room Temperature. Langmuir, 2022, 38, 2699-2710.	1.6	12

Jianbo Tan

#	Article	IF	CITATIONS
55	Segmented Copolymers Synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Using an Asymmetric Difunctional RAFT Agent and the Utilization in RAFT-Mediated Dispersion Polymerization. Macromolecules, 2022, 55, 65-77.	2.2	12
56	Fast and facile one-step synthesis of monodisperse thermo-responsive core–shell microspheres and applications. Polymer Chemistry, 2015, 6, 6698-6708.	1.9	11
57	Sodium Bis(acyl)phosphane oxide (SBAPO): An efficient photoinitiator for blue light initiated aqueous RAFT dispersion polymerization. Polymer, 2018, 145, 70-79.	1.8	10
58	Exploiting Wavelength Orthogonality in Photoinitiated RAFT Dispersion Polymerization and Photografting for Monodisperse Surface-Functional Polymeric Microspheres. ACS Macro Letters, 2022, 11, 716-722.	2.3	10
59	Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization. Polymers, 2017, 9, 681.	2.0	9
60	Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polymer Chemistry, 2020, 11, 4591-4603.	1.9	9
61	Efficient Synthesis and Self-Assembly of Segmented Hyperbranched Block Copolymers via RAFT-Mediated Dispersion Polymerization Using Segmented Hyperbranched Macro-RAFT Agents. Macromolecules, 2022, 55, 5775-5787.	2.2	9
62	Preparation of Block Copolymer Nanoâ€Objects with Embedded βâ€Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2021, 42, e2000720.	2.0	8
63	Linear and Star Block Copolymer Nanoparticles Prepared by Heterogeneous RAFT Polymerization Using an ω,ω-Heterodifunctional Macro-RAFT Agent. ACS Macro Letters, 2022, 11, 910-918.	2.3	8
64	Polymers with multiple functions: α,ï‰-macromolecular photoinitiators/chain transfer agents used in aqueous photoinitiated polymerization-induced self-assembly. Polymer Chemistry, 2022, 13, 4018-4027.	1.9	5
65	Mechanistic Investigation of the Position of Reversible Addition–Fragmentation Chain Transfer (RAFT) Groups in Heterogeneous RAFT Polymerization. Macromolecules, 2022, 55, 4916-4928.	2.2	5
66	Photoinitiated precipitation polymerization in liquid CO ₂ : Fast formation of crosslinked poly(acrylic acidâ€ <i>co</i> â€methoxy polyethylene glycol acrylate) microspheres. Journal of Polymer Science Part A, 2011, 49, 4660-4667.	2.5	4
67	Blue Light-Initiated Alcoholic RAFT Dispersion Polymerization of Benzyl Methacrylate: A Detailed Study. Polymers, 2019, 11, 1284.	2.0	3