
Raman Bekarevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. Journal of Power Sources, 2017, 363, 145-152.	7.8	129
2	Influence of strain on local structure and lithium ionic conduction in garnet-type solid electrolyte. Journal of Power Sources, 2017, 368, 97-106.	7.8	31
3	Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods. Applied Nanoscience (Switzerland), 2019, 9, 1017-1024.	3.1	24
4	Conversion Reaction in the Binder-Free Anode for Fast-Charging Li-Ion Batteries Based on WO ₃ Nanorods. ACS Applied Energy Materials, 2020, 3, 6700-6708.	5.1	20
5	Key factors limiting carbon nanotube strength: Structural characterization and mechanical properties of multi-walled carbon nanotubes. Mechanical Engineering Journal, 2017, 4, 17-00029-17-00029.	0.4	15
6	Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics, 2022, 14, 761.	4.5	11
7	Low Temperature Growth of Carbon Nanomaterials on the Polymer Substrate Using Ion Assisted Microwave Plasma CVD. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 545-549.	0.3	6
8	Two-dimensional Gaussian fitting for precise measurement of lattice constant deviation from a selected-area diffraction map. Microscopy (Oxford, England), 2018, 67, i142-i149.	1.5	6
9	Refilling of carbon nanotube cartridges for 3D nanomanufacturing. Nanoscale, 2016, 8, 7217-7223.	5.6	4
10	Effects of structural defects on strength and fracture properties of multi-walled carbon nanotubes. Transactions of the JSME (in Japanese), 2017, 83, 16-00283-16-00283.	0.2	4
11	Effect of the alloying elements in TiN sublayer on the structure and mechanical properties of carbon coatings. Thin Solid Films, 2022, 755, 139324.	1.8	4
12	Mass spectrometric study of ammonia/methane surface-wave plasma applied to low-temperature growth of carbon nanomaterials. Journal Physics D: Applied Physics, 2015, 48, 045201.	2.8	3
13	Concerted influence of microstructure and adsorbed water on lithium-ion conduction of Li1.3Al0.3Ti1.7(PO4)3. Journal of Power Sources, 2021, 511, 230422.	7.8	3
14	The Features of Synthesis, Structure and Mechanical Properties of Alloyed Diamond-Like Coatings. Physics Procedia, 2012, 32, 561-565.	1.2	2
15	The Effect of Substrate on the Low-Temperature Carbon Nanomaterials Growth by Microwave Excited Surface-wave Plasma Chemical Vapor Deposition. Journal of Physics: Conference Series, 2013, 417, 012042.	0.4	2
16	Low Temperature Growth of Carbon Nanomaterials on the Polymer Substrates by Microwave Plasma Technique. Transactions of the Materials Research Society of Japan, 2012, 37, 157-160.	0.2	2
17	Low-temperature Plasma Processing of Micro- and Nanostructured Materials for Biomedical Applications. Materials Research Society Symposia Proceedings, 2012, 1469, 31.	0.1	1
18	Coalescence of Metal Nanoparticles as the Origin of Nanocapillary Forces in Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 9606-9611.	3.1	1

#	Article	IF	CITATIONS
19	Accurate determination of strains at layered materials by selected area electron diffraction mapping. Japanese Journal of Applied Physics, 2019, 58, SIIA03.	1.5	1
20	Carrier Transfer in Closely Stacked GaAs/AlGaAs Quantum Dots Grown by Using Droplet Epitaxy. Journal of the Korean Physical Society, 2018, 72, 1356-1363.	0.7	0
21	Novel electron microscopy method for accurate measurements of the lattice constant changes in layered structures. Journal of Surface Analysis (Online), 2019, 26, 190-191.	0.1	Ο