Paola Lova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5093229/publications.pdf Version: 2024-02-01

DAOLA LOVA

#	Article	IF	CITATIONS
1	(INVITED)Planar microcavities: Materials and processing for light control. Optical Materials: X, 2022, 13, 100130.	0.3	5
2	2,5-Diisopropenylthiophene by Suzuki–Miyaura cross-coupling reaction and its exploitation in inverse vulcanization: a case study. RSC Advances, 2022, 12, 8924-8935.	1.7	3
3	Multilayer Polymer Photonic Aegises Against Near-Infrared Solar Irradiation Heating. ACS Applied Materials & Interfaces, 2022, 14, 14550-14560.	4.0	11
4	Mild Sol–Gel Conditions and High Dielectric Contrast: A Facile Processing toward Large-Scale Hybrid Photonic Crystals for Sensing and Photocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 19806-19817.	4.0	17
5	All-Polymer Microcavities for the Fluorescence Radiative Rate Modification of a Diketopyrrolopyrrole Derivative. ACS Omega, 2022, 7, 15499-15506.	1.6	7
6	Universal Design Rules for Flory–Huggins Polymer Photonic Vapor Sensors. Advanced Functional Materials, 2021, 31, 2009626.	7.8	15
7	Aquivion–Poly(<i>N</i> â€vinylcarbazole) Holistic Flory–Huggins Photonic Vapor Sensors. Advanced Optical Materials, 2021, 9, 2002006.	3.6	19
8	Photonic Vapor Sensors: Universal Design Rules for Flory–Huggins Polymer Photonic Vapor Sensors (Adv. Funct. Mater. 9/2021). Advanced Functional Materials, 2021, 31, 2170062.	7.8	0
9	Aquivion–Poly(<i>N</i> â€vinylcarbazole) Holistic Flory–Huggins Photonic Vapor Sensors (Advanced) Tj ET	Qq1_1_0.78	343]4 rgBT /
10	Prevention of Covid-19 Infection and Related Complications by Ozonized Oils. Journal of Personalized Medicine, 2021, 11, 226.	1.1	11
11	Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Applied Sciences (Switzerland), 2021, 11, 3532.	1.3	44
12	Into the Blue: Ketene Multicomponent Reactions under Visible Light. Journal of Organic Chemistry, 2021, 86, 5845-5851.	1.7	16
13	Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Materials Science and Engineering C, 2021, 124, 112067.	3.8	27
14	Light scattering approach to the in situ measurement of polymer crystallization during <scp>3D</scp> printing: A feasibility study. Polymer Crystallization, 2021, 4, e10182.	0.5	1
15	Composite Poly(vinyl alcohol)-Based Nanofibers Embedding Differently-Shaped Gold Nanoparticles: Preparation and Characterization. Polymers, 2021, 13, 1604.	2.0	2
16	Structural Transitions During Formation and Rehydration of Proton Conducting Polymeric Membranes. Macromolecular Rapid Communications, 2021, 42, 2000717.	2.0	0
17	On the development of electrochemical sensors coated with polycaprolactone. Electrochemistry Communications, 2021, 129, 107089.	2.3	9
18	Thin Polymer Films: Simple Optical Determination of Molecular Diffusion Coefficients. ACS Applied Polymer Materials, 2020, 2, 563-568.	2.0	14

Paola Lova

#	Article	IF	CITATIONS
19	Boron Carbon Nitride Thin Films: From Disordered to Ordered Conjugated Ternary Materials. Journal of the American Chemical Society, 2020, 142, 20883-20891.	6.6	58
20	Nanocomposite alginate-based electrospun membranes as novel adsorbent systems. International Journal of Biological Macromolecules, 2020, 165, 1939-1948.	3.6	28
21	Reshaping Hybrid Perovskites Emission with Flexible Polymer Microcavities. EPJ Web of Conferences, 2020, 230, 00006.	0.1	0
22	Strategies for Dielectric Contrast Enhancement in 1D Planar Polymeric Photonic Crystals. Applied Sciences (Switzerland), 2020, 10, 4122.	1.3	22
23	High Refractive Index Inverse Vulcanized Polymers for Organic Photonic Crystals. Crystals, 2020, 10, 154.	1.0	12
24	Sodium Alginate Cross-Linkable Planar 1D Photonic Crystals as a Promising Tool for Pb2+ Detection in Water. Chemosensors, 2020, 8, 37.	1.8	9
25	Black GaAs: Gold-Assisted Chemical Etching for Light Trapping and Photon Recycling. Micromachines, 2020, 11, 573.	1.4	4
26	Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor. Advanced Materials, 2020, 32, e1908140.	11.1	57
27	All-polymer Planar Photonic Crystals as an Innovative Tool for the Analysis of Air. EPJ Web of Conferences, 2020, 230, 00007.	0.1	0
28	Core–shell silica–rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing. RSC Advances, 2020, 10, 14958-14964.	1.7	5
29	Polymeric Planar Microcavities Doped with a Europium Complex. Crystals, 2020, 10, 287.	1.0	8
30	Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors. Materials Chemistry Frontiers, 2019, 3, 429-436.	3.2	52
31	Flory–Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & Interfaces, 2019, 11, 16872-16880.	4.0	36
32	All-polymer methylammonium lead iodide perovskite microcavities. Nanoscale, 2019, 11, 8978-8983.	2.8	30
33	A new method for the determination of molecular diffusion coefficient in polymer films by simple UV-VIS spectroscopy. AIP Conference Proceedings, 2019, , .	0.3	0
34	Solution Processed Polymer-ABX4 Perovskite-Like Microcavities. Applied Sciences (Switzerland), 2019, 9, 5203.	1.3	8
35	Tailoring the properties of polymers for photonic applications with optical nanocomposites. AIP Conference Proceedings, 2019, , .	0.3	0
36	Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Advances, 2018, 8, 13026-13033.	1.7	28

Paola Lova

#	Article	IF	CITATIONS
37	Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectors. ACS Photonics, 2018, 5, 867-874.	3.2	38
38	Selective Polymer Distributed Bragg Reflector Vapor Sensors. Polymers, 2018, 10, 1161.	2.0	28
39	Black GaAs by Metal-Assisted Chemical Etching. ACS Applied Materials & Interfaces, 2018, 10, 33434-33440.	4.0	21
40	Label-free vapor selectivity by polymer-inorganic composite photonic crystals sensors. AIP Conference Proceedings, 2018, , .	0.3	6
41	Colorimetric Detection of Perfluorinated Compounds by All-Polymer Photonic Transducers. ACS Omega, 2018, 3, 7517-7522.	1.6	31
42	Advances in Functional Solution Processed Planar 1D Photonic Crystals. Advanced Optical Materials, 2018, 6, 1800730.	3.6	145
43	Structural studies on copper and nitrogen doped nanosized anatase. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 867-876.	0.4	9
44	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	3.2	42
45	Allâ€Polymer Photonic Microcavities Doped with Perylene Bisimide Jâ€Aggregates. Advanced Optical Materials, 2017, 5, 1700523.	3.6	51
46	Directional fluorescence shaping and lasing in all-polymer microcavities doped with CdSe/CdS dot-in-rod nanocrystals. , 2017, , .		1
47	Label-Free Vapor Selectivity in Poly(<i>p</i> -Phenylene Oxide) Photonic Crystal Sensors. ACS Applied Materials & Interfaces, 2016, 8, 31941-31950.	4.0	93
48	Polymer Distributed Bragg Reflectors for Vapor Sensing. ACS Photonics, 2015, 2, 537-543.	3.2	100
49	Nanoimprint Lithography: Toward Functional Photonic Crystals. , 2015, , 187-212.		5
50	Hybrid ZnO:polystyrene nanocomposite for allâ€polymer photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 158-162.	0.8	30
51	Charge Redistribution at GaAs/P3HT Heterointerfaces with Different Surface Polarity. Journal of Physical Chemistry Letters, 2013, 4, 3303-3309.	2.1	22