Keiran M Raine

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5092997/keiran-m-raine-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67	32,553	51	73
papers	citations	h-index	g-index
73 ext. papers	39,181 ext. citations	29.1 avg, IF	5.63 L-index

#	Paper	IF	Citations
67	Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. <i>Nature Communications</i> , 2021 , 12, 6910	17.4	6
66	Convergent somatic mutations in metabolism genes in chronic liver disease. <i>Nature</i> , 2021 , 598, 473-478	50.4	10
65	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. <i>Nature Genetics</i> , 2020 , 52, 306-319	36.3	122
64	Extensive heterogeneity in somatic mutation and selection in the human bladder. <i>Science</i> , 2020 , 370, 75-82	33.3	67
63	Butler enables rapid cloud-based analysis of thousands of human genomes. <i>Nature Biotechnology</i> , 2020 , 38, 288-292	44.5	9
62	Framework for quality assessment of whole genome cancer sequences. <i>Nature Communications</i> , 2020 , 11, 5040	17.4	1
61	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748	17.4	10
60	Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. <i>Cell</i> , 2019 , 176, 1282-1294.e20	56.2	165
59	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. <i>Nature Genetics</i> , 2018 , 50, 682-692	36.3	112
58	Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. <i>Cell</i> , 2018 , 173, 611-623.e17	56.2	228
57	Split-Read Indel and Structural Variant Calling Using PINDEL. <i>Methods in Molecular Biology</i> , 2018 , 1833, 95-105	1.4	8
56	Prediction of acute myeloid leukaemia risk in healthy individuals. <i>Nature</i> , 2018 , 559, 400-404	50.4	368
55	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. <i>Leukemia</i> , 2018 , 32, 2604-2616	10.7	90
54	A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. <i>Nature Genetics</i> , 2017 , 49, 341-348	36.3	54
53	HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. <i>Nature Medicine</i> , 2017 , 23, 517-525	50.5	444
52	Universal Patterns of Selection in Cancer and Somatic Tissues. <i>Cell</i> , 2017 , 171, 1029-1041.e21	56.2	576
51	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. <i>PLoS Genetics</i> , 2017 , 13, e1007001	6	20

50	Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell, 2017, 32, 169-184.e7	24.3	346
49	Mutational signatures of ionizing radiation in second malignancies. <i>Nature Communications</i> , 2016 , 7, 12605	17.4	152
48	Genomic Classification and Prognosis in Acute Myeloid Leukemia. <i>New England Journal of Medicine</i> , 2016 , 374, 2209-2221	59.2	1999
47	cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data. <i>Current Protocols in Bioinformatics</i> , 2016 , 56, 15.10.1-15.10.18	24.2	107
46	ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data. <i>Current Protocols in Bioinformatics</i> , 2016 , 56, 15.9.1-15.9.17	24.2	60
45	Landscape of somatic mutations in 560 breast cancer whole-genome sequences. <i>Nature</i> , 2016 , 534, 47-	5 4 0.4	1193
44	Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer. Cell Reports, 2016, 16, 2032	-46 .6	30
43	Subclonal diversification of primary breast cancer revealed by multiregion sequencing. <i>Nature Medicine</i> , 2015 , 21, 751-9	50.5	521
42	Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. <i>Nature Genetics</i> , 2015 , 47, 367-372	36.3	292
41	The Life History of 21 Breast Cancers. <i>Cell</i> , 2015 , 162, 924	56.2	7
40	cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing. <i>Current Protocols in Bioinformatics</i> , 2015 , 52, 15.7.1-15.7.12	24.2	74
39	A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. <i>Nature Communications</i> , 2015 , 6, 10001	17.4	199
38	RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. <i>Nature Genetics</i> , 2014 , 46, 116-25	36.3	244
37	Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. <i>Science</i> , 2014 , 345, 1251343	33.3	250
36	Processed pseudogenes acquired somatically during cancer development. <i>Nature Communications</i> , 2014 , 5, 3644	17.4	68
35	C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. <i>Genome Research</i> , 2014 , 24, 1624-36	9.7	125
34	Polygenic in vivo validation of cancer mutations using transposons. <i>Genome Biology</i> , 2014 , 15, 455	18.3	3
33	Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. <i>Nature Genetics</i> , 2013 , 45, 923-6	36.3	138

32	Signatures of mutational processes in human cancer. <i>Nature</i> , 2013 , 500, 415-21	50.4	5895
31	Single-cell paired-end genome sequencing reveals structural variation per cell cycle. <i>Nucleic Acids Research</i> , 2013 , 41, 6119-38	20.1	125
30	Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs. <i>Twin Research and Human Genetics</i> , 2013 , 16, 1026-32	2.2	30
29	Clinical and biological implications of driver mutations in myelodysplastic syndromes. <i>Blood</i> , 2013 , 122, 3616-27; quiz 3699	2.2	1169
28	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. <i>Genome Biology</i> , 2013 , 14, R113	18.3	33
27	Whole exome sequencing of adenoid cystic carcinoma. <i>Journal of Clinical Investigation</i> , 2013 , 123, 2965-	· 8 15.9	188
26	DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. <i>ELife</i> , 2013 , 2, e00534	8.9	246
25	Author response: DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis 2013 ,		2
24	Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. <i>Cell</i> , 2012 , 148, 780-91	56.2	251
23	The landscape of cancer genes and mutational processes in breast cancer. <i>Nature</i> , 2012 , 486, 400-4	50.4	1264
22	Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. <i>New England Journal of Medicine</i> , 2012 , 366, 883-892	59.2	5559
21	Mutational processes molding the genomes of 21 breast cancers. <i>Cell</i> , 2012 , 149, 979-93	56.2	1279
20	The life history of 21 breast cancers. <i>Cell</i> , 2012 , 149, 994-1007	56.2	979
19	Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. <i>Journal of Pathology</i> , 2012 , 227, 446-55	9.4	72
18	Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. <i>Nature</i> , 2011 , 469, 539-42	50.4	943
17	Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. <i>Nature</i> , 2011 , 475, 101-5	50.4	1206
16	Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. <i>Nature Genetics</i> , 2007 , 39, 1127-33	36.3	189
15	Patterns of somatic mutation in human cancer genomes. <i>Nature</i> , 2007 , 446, 153-8	50.4	2400

LIST OF PUBLICATIONS

14	Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. <i>American Journal of Human Genetics</i> , 2007 ,	11	163
13	Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. <i>American Journal of Human Genetics</i> , 2007 , 80, 982-7	11	120
12	Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. <i>American Journal of Human Genetics</i> , 2007 , 81, 367-74	11	66
11	Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. <i>Genes Chromosomes and Cancer</i> , 2006 , 45, 42-6	5	88
10	A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. <i>Cancer Research</i> , 2006 , 66, 3987-91	10.1	328
9	Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. <i>American Journal of Human Genetics</i> , 2006 , 79, 1119-24	11	92
8	Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. <i>Molecular Cancer Therapeutics</i> , 2006 , 5, 2606-12	6.1	322
7	A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. <i>Nature Genetics</i> , 2005 , 37, 590-2	36.3	289
6	Somatic mutations of the protein kinase gene family in human lung cancer. <i>Cancer Research</i> , 2005 , 65, 7591-5	10.1	392
5	Lung cancer: intragenic ERBB2 kinase mutations in tumours. <i>Nature</i> , 2004 , 431, 525-6	50.4	655
4	Universal patterns of selection in cancer and somatic tissues		7
3	Framework for quality assessment of whole genome, cancer sequences		6
2	Large-Scale Uniform Analysis of Cancer Whole Genomes in Multiple Computing Environments		14
1	Pan-cancer analysis of whole genomes reveals driver rearrangements promoted by LINE-1 retrotransposition in human tumours		10