Stan B Floresco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cannabinoid receptor type 1 antagonists alter aspects of risk/reward decision making independent of toluene-mediated effects. Psychopharmacology, 2022, 239, 1337-1347.	3.1	3
2	Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology, 2022, 47, 180-195.	5.4	35
3	Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neuroscience and Biobehavioral Reviews, 2022, 133, 104503.	6.1	16
4	Distinct Medial Orbitofrontal–Striatal Circuits Support Dissociable Component Processes of Risk/Reward Decision-Making. Journal of Neuroscience, 2022, 42, 2743-2755.	3.6	12
5	Androgen synthesis inhibition increases behavioural flexibility and <scp>mPFC</scp> tyrosine hydroxylase in gonadectomized male rats. Journal of Neuroendocrinology, 2022, 34, e13128.	2.6	6
6	Central CRF and acute stress differentially modulate probabilistic reversal learning in male and female rats. Behavioural Brain Research, 2021, 397, 112929.	2.2	9
7	LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields. Nature Communications, 2021, 12, 100.	12.8	13
8	Differential effects of d- and l-enantiomers of govadine on distinct forms of cognitive flexibility and a comparison with dopaminergic drugs. Psychopharmacology, 2021, 238, 1069-1085.	3.1	1
9	Early life adversity promotes resilience to opioid addiction-related phenotypes in male rats and sex-specific transcriptional changes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
10	Learning is a matter of history and relevance for lateral hypothalamus. Nature Neuroscience, 2021, 24, 295-296.	14.8	1
11	Dorsomedial striatal contributions to different forms of risk/reward decision making. Neurobiology of Learning and Memory, 2021, 178, 107369.	1.9	5
12	Ventral Pallidum GABA Neurons Mediate Motivation Underlying Risky Choice. Journal of Neuroscience, 2021, 41, 4500-4513.	3.6	24
13	Hippocampal neurogenesis promotes preference for future rewards. Molecular Psychiatry, 2021, 26, 6317-6335.	7.9	14
14	Maternal sucrose consumption alters behaviour and steroids in adult rat offspring. Journal of Endocrinology, 2021, 251, 161-180.	2.6	8
15	Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology, 2021, 46, 1240-1251.	5.4	13
16	Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology, 2020, 162, 107844.	4.1	9
17	Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology, 2020, 45, 683-693.	5.4	44
18	Basolateral amygdala – nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 98, 109830.	4.8	21

#	Article	IF	CITATIONS
19	Risk-based decision making in rats: Modulation by sex and amphetamine. Hormones and Behavior, 2020, 125, 104815.	2.1	18
20	Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. Learning and Memory, 2020, 27, 429-440.	1.3	20
21	Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. Journal of Neuroscience, 2020, 40, 4773-4787.	3.6	68
22	Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Hormones and Behavior, 2020, 120, 104689.	2.1	12
23	Differential effects of corticotropin-releasing factor and acute stress on different forms of risk/reward decision-making. Neurobiology of Learning and Memory, 2020, 169, 107167.	1.9	6
24	A role for neurogenesis in probabilistic reward learning Behavioral Neuroscience, 2020, 134, 283-295.	1.2	13
25	CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. ELife, 2020, 9, .	6.0	31
26	Reward systems, cognition, and emotion: Introduction to the special issue. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 409-414.	2.0	14
27	Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 2019, 103, 50-59.	6.1	48
28	Alterations in effort-related decision-making induced by stimulation of dopamine D1, D2, D3, and corticotropin-releasing factor receptors in nucleus accumbens subregions. Psychopharmacology, 2019, 236, 2699-2712.	3.1	24
29	DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. Neurobiology of Learning and Memory, 2019, 161, 1-11.	1.9	33
30	The Abused Inhalant Toluene Impairs Medial Prefrontal Cortex Activity and Risk/Reward Decision-Making during a Probabilistic Discounting Task. Journal of Neuroscience, 2019, 39, 9207-9220.	3.6	19
31	Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Structure and Function, 2019, 224, 171-190.	2.3	5
32	Differential Contributions of Nucleus Accumbens Subregions to Cue-Guided Risk/Reward Decision Making and Implementation of Conditional Rules. Journal of Neuroscience, 2018, 38, 1901-1914.	3.6	44
33	D-Cycloserine Facilitates Reversal in an Animal Model of Post-traumatic Stress Disorder. Behavioural Brain Research, 2018, 347, 332-338.	2.2	12
34	Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344Â× brown Norway rats. Neurobiology of Aging, 2018, 72, 134-146.	3.1	16
35	Cooperative and dissociable involvement of the nucleus accumbens core and shell in the promotion and inhibition of actions during active and inhibitory avoidance. Neuropharmacology, 2018, 138, 57-71.	4.1	24
36	Androgen Regulation of the Mesocorticolimbic System and Executive Function. Frontiers in Endocrinology, 2018, 9, 279.	3.5	59

#	Article	IF	CITATIONS
37	254. Dissociable Contributions by Prefrontal Cortical Gaba and Glutamate Transmission in Regulating Executive and Affective Functions Relevant to Schizophrenia. Biological Psychiatry, 2018, 83, S102-S103.	1.3	Ο
38	Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making. ENeuro, 2018, 5, ENEURO.0422-18.2018.	1.9	24
39	Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking. Neurobiology of Learning and Memory, 2017, 140, 92-105.	1.9	53
40	Prefrontal Dopamine D ₁ and D ₂ Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits. Journal of Neuroscience, 2017, 37, 6200-6213.	3.6	99
41	Strategy set-shifting and response inhibition in adult rats exposed to an environmental polychlorinated biphenyl mixture during adolescence. Neurotoxicology and Teratology, 2017, 63, 14-23.	2.4	13
42	Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABAA transmission: comparison with NMDA transmission. Psychopharmacology, 2017, 234, 2777-2792.	3.1	14
43	Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology, 2017, 113, 10-20.	4.1	23
44	Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology, 2017, 42, 1024-1036.	5.4	85
45	Deciphering Decision Making: Variation in Animal Models of Effort- and Uncertainty-Based Choice Reveals Distinct Neural Circuitries Underlying Core Cognitive Processes. Journal of Neuroscience, 2016, 36, 12069-12079.	3.6	86
46	Dopamine Neurons, Input Integration, and Reward Prediction Errors: E Pluribus Unum. Neuron, 2016, 91, 1192-1194.	8.1	1
47	Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology, 2016, 233, 2319-2327.	3.1	22
48	Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders. Neuropharmacology, 2016, 101, 279-290.	4.1	32
49	Perturbations in Effort-Related Decision-Making Driven by Acute Stress and Corticotropin-Releasing Factor. Neuropsychopharmacology, 2016, 41, 2147-2159.	5.4	80
50	Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning. Journal of Neuroscience, 2016, 36, 1996-2006.	3.6	149
51	Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology, 2016, 233, 121-136.	3.1	35
52	Operant Procedures for Assessing Behavioral Flexibility in Rats. Journal of Visualized Experiments, 2015, , e52387.	0.3	39
53	Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	41
54	Prefrontal Cortical Gamma-Aminobutyric Acid Transmission and Cognitive Function: Drawing Links to Schizophrenia from Preclinical Research. Biological Psychiatry, 2015, 77, 929-939.	1.3	56

#	Article	IF	CITATIONS
55	Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neuroscience and Biobehavioral Reviews, 2015, 58, 147-167.	6.1	125
56	Noradrenaline and dopamine: sharing the Workload. Trends in Neurosciences, 2015, 38, 465-467.	8.6	8
57	Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder. Behavioural Brain Research, 2015, 286, 256-264.	2.2	48
58	Noradrenergic modulation of risk/reward decision making. Psychopharmacology, 2015, 232, 2681-2696.	3.1	41
59	The Nucleus Accumbens: An Interface Between Cognition, Emotion, and Action. Annual Review of Psychology, 2015, 66, 25-52.	17.7	620
60	Dopaminergic Circuitry and Risk/Reward Decision Making: Implications for Schizophrenia. Schizophrenia Bulletin, 2015, 41, 9-14.	4.3	38
61	Dopamine Antagonism Decreases Willingness to Expend Physical, But Not Cognitive, Effort: A Comparison of Two Rodent Cost/Benefit Decision-Making Tasks. Neuropsychopharmacology, 2015, 40, 1005-1015.	5.4	127
62	Selective Involvement by the Medial Orbitofrontal Cortex in Biasing Risky, But Not Impulsive, Choice. Cerebral Cortex, 2014, 24, 154-162.	2.9	93
63	Chronic Alcohol Disrupts Dopamine Receptor Activity and the Cognitive Function of the Medial Prefrontal Cortex. Journal of Neuroscience, 2014, 34, 3706-3718.	3.6	104
64	Prefrontal Cortical GABA Transmission Modulates Discrimination and Latent Inhibition of Conditioned Fear: Relevance for Schizophrenia. Neuropsychopharmacology, 2014, 39, 2473-2484.	5.4	34
65	What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nature Neuroscience, 2014, 17, 33-35.	14.8	105
66	Adolescent Alcohol Exposure Reduces Behavioral Flexibility, Promotes Disinhibition, and Increases Resistance to Extinction of Ethanol Self-Administration in Adulthood. Neuropsychopharmacology, 2014, 39, 2570-2583.	5.4	175
67	Overriding Phasic Dopamine Signals Redirects Action Selection during Risk/Reward Decision Making. Neuron, 2014, 84, 177-189.	8.1	116
68	Preferential Involvement by Nucleus Accumbens Shell in Mediating Probabilistic Learning and Reversal Shifts. Journal of Neuroscience, 2014, 34, 4618-4626.	3.6	81
69	Sex differences in response to amphetamine in adult Long–Evans rats performing a delay-discounting task. Pharmacology Biochemistry and Behavior, 2014, 118, 1-9.	2.9	35
70	Receptor-Specific Modulation of Risk-Based Decision Making by Nucleus Accumbens Dopamine. Neuropsychopharmacology, 2013, 38, 715-728.	5.4	95
71	Acute stress impairs set-shifting but not reversal learning. Behavioural Brain Research, 2013, 252, 222-229.	2.2	58
72	Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience and Biobehavioral Reviews, 2013, 37, 2125-2140.	6.1	68

#	Article	IF	CITATIONS
73	Prefrontal NMDA Receptors and Cognition: Working 2B Remembered. Neuron, 2013, 77, 603-605.	8.1	4
74	Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U―toward a family of functions. Frontiers in Neuroscience, 2013, 7, 62.	2.8	260
75	Estradiol Modulates Effort-Based Decision Making in Female Rats. Neuropsychopharmacology, 2012, 37, 390-401.	5.4	79
76	Dynamic Fluctuations in Dopamine Efflux in the Prefrontal Cortex and Nucleus Accumbens during Risk-Based Decision Making. Journal of Neuroscience, 2012, 32, 16880-16891.	3.6	92
77	NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology, 2012, 62, 797-806.	4.1	117
78	Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making. Neuropsychopharmacology, 2012, 37, 2194-2209.	5.4	133
79	Separate Prefrontal-Subcortical Circuits Mediate Different Components of Risk-Based Decision Making. Journal of Neuroscience, 2012, 32, 2886-2899.	3.6	137
80	Reducing Prefrontal Gamma-Aminobutyric Acid Activity Induces Cognitive, Behavioral, and Dopaminergic Abnormalities That Resemble Schizophrenia. Biological Psychiatry, 2011, 69, 432-441.	1.3	147
81	Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making. Journal of Neuroscience, 2011, 31, 8625-8633.	3.6	158
82	Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behavioural Brain Research, 2011, 225, 348-357.	2.2	25
83	Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 97-112.	2.0	133
84	Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology, 2011, 216, 525-535.	3.1	65
85	Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals. Neuropsychopharmacology, 2011, 36, 227-250.	5.4	87
86	Repeated Amphetamine Exposure Disrupts Dopaminergic Modulation of Amygdala-Prefrontal Circuitry and Cognitive/Emotional Functioning. Journal of Neuroscience, 2011, 31, 11282-11294.	3.6	15
87	Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell Behavioral Neuroscience, 2010, 124, 179-191.	1.2	124
88	Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology, 2010, 211, 87-98.	3.1	152
89	Differential effects of dopaminergic manipulations on risky choice. Psychopharmacology, 2010, 211, 209-221.	3.1	102
90	Prefrontal Cortical Contribution to Risk-Based Decision Making. Cerebral Cortex, 2010, 20, 1816-1828.	2.9	172

#	Article	IF	CITATIONS
91	Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. Neuron, 2010, 66, 438-448.	8.1	311
92	Orexin A/Hypocretin-1 Selectively Promotes Motivation for Positive Reinforcers. Journal of Neuroscience, 2009, 29, 11215-11225.	3.6	322
93	Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology, 2009, 205, 189-201.	3.1	44
94	Regional specificity in dopamine signaling during rewardâ€related learning†(Commentary on Aragona) Tj ETQq(0 0 0 rgBT 2.6	/Qverlock 10
95	Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behavioural Brain Research, 2009, 204, 396-409.	2.2	263
96	Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 668-675.	4.8	65
97	Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic–Pituitary–Adrenal Axis. Neuropsychopharmacology, 2009, 34, 2733-2745.	5.4	257
98	Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 2009, 34, 2041-2052.	5.4	178
99	Dopaminergic Modulation of Risk-Based Decision Making. Neuropsychopharmacology, 2009, 34, 681-697.	5.4	289
100	Fundamental Contribution by the Basolateral Amygdala to Different Forms of Decision Making. Journal of Neuroscience, 2009, 29, 5251-5259.	3.6	149
101	Contributions of Mesocorticolimbic Dopamine to Cognition and Executive Function. , 2009, , 215-229.		1
102	Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 375-389.	2.0	256
103	Dopaminergic and Glutamatergic Regulation of Effort- and Delay-Based Decision Making. Neuropsychopharmacology, 2008, 33, 1966-1979.	5.4	358
104	Disruption of AMPA Receptor Endocytosis Impairs the Extinction, but not Acquisition of Learned Fear. Neuropsychopharmacology, 2008, 33, 2416-2426.	5.4	144
105	Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Neuroscience, 2008, 154, 877-884.	2.3	112
106	Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiology of Learning and Memory, 2008, 89, 567-573.	1.9	160
107	Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behavioural Brain Research, 2008, 190, 85-96.	2.2	338
108	Thalamic-Prefrontal Cortical-Ventral Striatal Circuitry Mediates Dissociable Components of Strategy Set Shifting. Cerebral Cortex, 2007, 17, 1625-1636.	2.9	189

#	Article	IF	CITATIONS
109	Review of Preparing for graduate study in psychology: 101 questions and answers Canadian Psychology, 2007, 48, 276-277.	2.1	0
110	Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 2007, 30, 220-227.	8.6	883
111	The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior. Neuroscience, 2007, 146, 1484-1494.	2.3	74
112	Dopaminergic Regulation of Inhibitory and Excitatory Transmission in the Basolateral Amygdala-Prefrontal Cortical Pathway. Journal of Neuroscience, 2007, 27, 2045-2057.	3.6	182
113	Dopaminergic regulation of limbic-striatal interplay. Journal of Psychiatry and Neuroscience, 2007, 32, 400-11.	2.4	64
114	Systemic and local administration of estradiol into the prefrontal cortex or hippocampus differentially alters working memory. Neurobiology of Learning and Memory, 2006, 86, 293-304.	1.9	69
115	Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology, 2006, 188, 567-585.	3.1	330
116	Alterations in behavioral flexibility by cannabinoid CB1 receptor agonists and antagonists. Psychopharmacology, 2006, 187, 245-259.	3.1	44
117	Multiple Dopamine Receptor Subtypes in the Medial Prefrontal Cortex of the Rat Regulate Set-Shifting. Neuropsychopharmacology, 2006, 31, 297-309.	5.4	354
118	Amygdala-Prefrontal Cortical Circuitry Regulates Effort-Based Decision Making. Cerebral Cortex, 2006, 17, 251-260.	2.9	253
119	Dissociable Roles for the Nucleus Accumbens Core and Shell in Regulating Set Shifting. Journal of Neuroscience, 2006, 26, 2449-2457.	3.6	200
120	Developing Predictive Animal Models and Establishing a Preclinical Trials Network for Assessing Treatment Effects on Cognition in Schizophrenia. Schizophrenia Bulletin, 2005, 31, 888-894.	4.3	87
121	Reply to 'Extrasynaptic dopamine and phasic neuronal activity'. Nature Neuroscience, 2004, 7, 199-199.	14.8	8
122	Magnitude of Dopamine Release in Medial Prefrontal Cortex Predicts Accuracy of Memory on a Delayed Response Task. Journal of Neuroscience, 2004, 24, 547-553.	3.6	216
123	Electrophysiological Interactions between Striatal Glutamatergic and Dopaminergic Systems. Annals of the New York Academy of Sciences, 2003, 1003, 53-74.	3.8	98
124	Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience, 2003, 6, 968-973.	14.8	948
125	Gating of Hippocampal-Evoked Activity in Prefrontal Cortical Neurons by Inputs from the Mediodorsal Thalamus and Ventral Tegmental Area. Journal of Neuroscience, 2003, 23, 3930-3943.	3.6	131
126	Alterations in time–place learning induced by lesions to the rat medial prefrontal cortex. Behavioural Processes, 2002, 59, 87-100.	1.1	11

#	Article	IF	CITATIONS
127	High levels of estradiol disrupt conditioned place preference learning, stimulus response learning and reference memory but have limited effects on working memory. Behavioural Brain Research, 2001, 126, 115-126.	2.2	150
128	Dopamine D ₁ and NMDA Receptors Mediate Potentiation of Basolateral Amygdala-Evoked Firing of Nucleus Accumbens Neurons. Journal of Neuroscience, 2001, 21, 6370-6376.	3.6	134
129	Delay-dependent modulation of memory retrieval by infusion of a dopamine Dâ,•agonist into the rat medial prefrontal cortex Behavioral Neuroscience, 2001, 115, 934-939.	1.2	199
130	Modulation of Hippocampal and Amygdalar-Evoked Activity of Nucleus Accumbens Neurons by Dopamine: Cellular Mechanisms of Input Selection. Journal of Neuroscience, 2001, 21, 2851-2860.	3.6	218
131	Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons. Journal of Neuroscience, 2001, 21, 4915-4922.	3.6	475
132	Reversible lesions of the rhinal cortex produce delayed non-matching-to-sample deficits in rats. NeuroReport, 2000, 11, 351-354.	1.2	16
133	Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D 1 receptors. Psychopharmacology, 2000, 151, 242-251.	3.1	114
134	Thalamic–Cortical–Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. Journal of Neuroscience, 1999, 19, 11061-11071.	3.6	163
135	Involvement of the Ventral Pallidum in Working Memory Tasks With or Without a Delay. Annals of the New York Academy of Sciences, 1999, 877, 711-716.	3.8	22
136	Dopamine and hippocampal input to the nucleus accumbens play an essential role in the search for food in an unpredictable environment. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 277-286.	1.3	21
137	Association Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. European Journal of Neuroscience, 1998, 10, 1241-1251.	2.6	147
138	D ₁ Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat. Journal of Neuroscience, 1998, 18, 1613-1621.	3.6	462
139	Selective Roles for Hippocampal, Prefrontal Cortical, and Ventral Striatal Circuits in Radial-Arm Maze Tasks With or Without a Delay. Journal of Neuroscience, 1997, 17, 1880-1890.	3.6	662
140	Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats Behavioral Neuroscience, 1997, 111, 1184-1196.	1.2	124
141	Stimulation of the Ventral Subiculum of the Hippocampus Evokes Glutamate Receptor-mediated Changes in Dopamine Efflux in the Rat Nucleus Accumbens. European Journal of Neuroscience, 1997, 9, 902-911.	2.6	187
142	Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats Behavioral Neuroscience, 1997, 111, 1184-1196.	1.2	40
143	A selective role for dopamine in the nucleus accumbens of the rat in random foraging but not delayed spatial win-shift-based foraging. Behavioural Brain Research, 1996, 80, 161-168.	2.2	56
144	Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behavioural Brain Research, 1996, 81, 163-171.	2.2	80

#	Article	IF	CITATIONS
145	Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 1995, 81, 811-823.	28.9	758