
Stan B Floresco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092548/publications.pdf Version: 2024-02-01

STAN R FLODESCO

#	Article	IF	CITATIONS
1	Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience, 2003, 6, 968-973.	14.8	948
2	Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 2007, 30, 220-227.	8.6	883
3	Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 1995, 81, 811-823.	28.9	758
4	Selective Roles for Hippocampal, Prefrontal Cortical, and Ventral Striatal Circuits in Radial-Arm Maze Tasks With or Without a Delay. Journal of Neuroscience, 1997, 17, 1880-1890.	3.6	662
5	The Nucleus Accumbens: An Interface Between Cognition, Emotion, and Action. Annual Review of Psychology, 2015, 66, 25-52.	17.7	620
6	Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons. Journal of Neuroscience, 2001, 21, 4915-4922.	3.6	475
7	D ₁ Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat. Journal of Neuroscience, 1998, 18, 1613-1621.	3.6	462
8	Dopaminergic and Glutamatergic Regulation of Effort- and Delay-Based Decision Making. Neuropsychopharmacology, 2008, 33, 1966-1979.	5.4	358
9	Multiple Dopamine Receptor Subtypes in the Medial Prefrontal Cortex of the Rat Regulate Set-Shifting. Neuropsychopharmacology, 2006, 31, 297-309.	5.4	354
10	Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behavioural Brain Research, 2008, 190, 85-96.	2.2	338
11	Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology, 2006, 188, 567-585.	3.1	330
12	Orexin A/Hypocretin-1 Selectively Promotes Motivation for Positive Reinforcers. Journal of Neuroscience, 2009, 29, 11215-11225.	3.6	322
13	Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. Neuron, 2010, 66, 438-448.	8.1	311
14	Dopaminergic Modulation of Risk-Based Decision Making. Neuropsychopharmacology, 2009, 34, 681-697.	5.4	289
15	Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behavioural Brain Research, 2009, 204, 396-409.	2.2	263
16	Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U―toward a family of functions. Frontiers in Neuroscience, 2013, 7, 62.	2.8	260
17	Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic–Pituitary–Adrenal Axis. Neuropsychopharmacology, 2009, 34, 2733-2745.	5.4	257
18	Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 375-389.	2.0	256

#	Article	IF	CITATIONS
19	Amygdala-Prefrontal Cortical Circuitry Regulates Effort-Based Decision Making. Cerebral Cortex, 2006, 17, 251-260.	2.9	253
20	Modulation of Hippocampal and Amygdalar-Evoked Activity of Nucleus Accumbens Neurons by Dopamine: Cellular Mechanisms of Input Selection. Journal of Neuroscience, 2001, 21, 2851-2860.	3.6	218
21	Magnitude of Dopamine Release in Medial Prefrontal Cortex Predicts Accuracy of Memory on a Delayed Response Task. Journal of Neuroscience, 2004, 24, 547-553.	3.6	216
22	Dissociable Roles for the Nucleus Accumbens Core and Shell in Regulating Set Shifting. Journal of Neuroscience, 2006, 26, 2449-2457.	3.6	200
23	Delay-dependent modulation of memory retrieval by infusion of a dopamine Dâ,•agonist into the rat medial prefrontal cortex Behavioral Neuroscience, 2001, 115, 934-939.	1.2	199
24	Thalamic-Prefrontal Cortical-Ventral Striatal Circuitry Mediates Dissociable Components of Strategy Set Shifting. Cerebral Cortex, 2007, 17, 1625-1636.	2.9	189
25	Stimulation of the Ventral Subiculum of the Hippocampus Evokes Glutamate Receptor-mediated Changes in Dopamine Efflux in the Rat Nucleus Accumbens. European Journal of Neuroscience, 1997, 9, 902-911.	2.6	187
26	Dopaminergic Regulation of Inhibitory and Excitatory Transmission in the Basolateral Amygdala-Prefrontal Cortical Pathway. Journal of Neuroscience, 2007, 27, 2045-2057.	3.6	182
27	Ventral Striatal Dopamine Modulation of Different Forms of Behavioral Flexibility. Neuropsychopharmacology, 2009, 34, 2041-2052.	5.4	178
28	Adolescent Alcohol Exposure Reduces Behavioral Flexibility, Promotes Disinhibition, and Increases Resistance to Extinction of Ethanol Self-Administration in Adulthood. Neuropsychopharmacology, 2014, 39, 2570-2583.	5.4	175
29	Prefrontal Cortical Contribution to Risk-Based Decision Making. Cerebral Cortex, 2010, 20, 1816-1828.	2.9	172
30	Thalamic–Cortical–Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. Journal of Neuroscience, 1999, 19, 11061-11071.	3.6	163
31	Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiology of Learning and Memory, 2008, 89, 567-573.	1.9	160
32	Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making. Journal of Neuroscience, 2011, 31, 8625-8633.	3.6	158
33	Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology, 2010, 211, 87-98.	3.1	152
34	High levels of estradiol disrupt conditioned place preference learning, stimulus response learning and reference memory but have limited effects on working memory. Behavioural Brain Research, 2001, 126, 115-126.	2.2	150
35	Fundamental Contribution by the Basolateral Amygdala to Different Forms of Decision Making. Journal of Neuroscience, 2009, 29, 5251-5259.	3.6	149
36	Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning. Journal of Neuroscience, 2016, 36, 1996-2006.	3.6	149

#	Article	IF	CITATIONS
37	Association Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. European Journal of Neuroscience, 1998, 10, 1241-1251.	2.6	147
38	Reducing Prefrontal Gamma-Aminobutyric Acid Activity Induces Cognitive, Behavioral, and Dopaminergic Abnormalities That Resemble Schizophrenia. Biological Psychiatry, 2011, 69, 432-441.	1.3	147
39	Disruption of AMPA Receptor Endocytosis Impairs the Extinction, but not Acquisition of Learned Fear. Neuropsychopharmacology, 2008, 33, 2416-2426.	5.4	144
40	Separate Prefrontal-Subcortical Circuits Mediate Different Components of Risk-Based Decision Making. Journal of Neuroscience, 2012, 32, 2886-2899.	3.6	137
41	Dopamine D ₁ and NMDA Receptors Mediate Potentiation of Basolateral Amygdala-Evoked Firing of Nucleus Accumbens Neurons. Journal of Neuroscience, 2001, 21, 6370-6376.	3.6	134
42	Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cognitive, Affective and Behavioral Neuroscience, 2011, 11, 97-112.	2.0	133
43	Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making. Neuropsychopharmacology, 2012, 37, 2194-2209.	5.4	133
44	Gating of Hippocampal-Evoked Activity in Prefrontal Cortical Neurons by Inputs from the Mediodorsal Thalamus and Ventral Tegmental Area. Journal of Neuroscience, 2003, 23, 3930-3943.	3.6	131
45	Dopamine Antagonism Decreases Willingness to Expend Physical, But Not Cognitive, Effort: A Comparison of Two Rodent Cost/Benefit Decision-Making Tasks. Neuropsychopharmacology, 2015, 40, 1005-1015.	5.4	127
46	Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neuroscience and Biobehavioral Reviews, 2015, 58, 147-167.	6.1	125
47	Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats Behavioral Neuroscience, 1997, 111, 1184-1196.	1.2	124
48	Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell Behavioral Neuroscience, 2010, 124, 179-191.	1.2	124
49	NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology, 2012, 62, 797-806.	4.1	117
50	Overriding Phasic Dopamine Signals Redirects Action Selection during Risk/Reward Decision Making. Neuron, 2014, 84, 177-189.	8.1	116
51	Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D 1 receptors. Psychopharmacology, 2000, 151, 242-251.	3.1	114
52	Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Neuroscience, 2008, 154, 877-884.	2.3	112
53	What's better for me? Fundamental role for lateral habenula in promoting subjective decision biases. Nature Neuroscience, 2014, 17, 33-35.	14.8	105
54	Chronic Alcohol Disrupts Dopamine Receptor Activity and the Cognitive Function of the Medial Prefrontal Cortex. Journal of Neuroscience, 2014, 34, 3706-3718.	3.6	104

#	Article	IF	CITATIONS
55	Differential effects of dopaminergic manipulations on risky choice. Psychopharmacology, 2010, 211, 209-221.	3.1	102
56	Prefrontal Dopamine D ₁ and D ₂ Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits. Journal of Neuroscience, 2017, 37, 6200-6213.	3.6	99
57	Electrophysiological Interactions between Striatal Glutamatergic and Dopaminergic Systems. Annals of the New York Academy of Sciences, 2003, 1003, 53-74.	3.8	98
58	Receptor-Specific Modulation of Risk-Based Decision Making by Nucleus Accumbens Dopamine. Neuropsychopharmacology, 2013, 38, 715-728.	5.4	95
59	Selective Involvement by the Medial Orbitofrontal Cortex in Biasing Risky, But Not Impulsive, Choice. Cerebral Cortex, 2014, 24, 154-162.	2.9	93
60	Dynamic Fluctuations in Dopamine Efflux in the Prefrontal Cortex and Nucleus Accumbens during Risk-Based Decision Making. Journal of Neuroscience, 2012, 32, 16880-16891.	3.6	92
61	Developing Predictive Animal Models and Establishing a Preclinical Trials Network for Assessing Treatment Effects on Cognition in Schizophrenia. Schizophrenia Bulletin, 2005, 31, 888-894.	4.3	87
62	Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals. Neuropsychopharmacology, 2011, 36, 227-250.	5.4	87
63	Deciphering Decision Making: Variation in Animal Models of Effort- and Uncertainty-Based Choice Reveals Distinct Neural Circuitries Underlying Core Cognitive Processes. Journal of Neuroscience, 2016, 36, 12069-12079.	3.6	86
64	Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology, 2017, 42, 1024-1036.	5.4	85
65	Preferential Involvement by Nucleus Accumbens Shell in Mediating Probabilistic Learning and Reversal Shifts. Journal of Neuroscience, 2014, 34, 4618-4626.	3.6	81
66	Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behavioural Brain Research, 1996, 81, 163-171.	2.2	80
67	Perturbations in Effort-Related Decision-Making Driven by Acute Stress and Corticotropin-Releasing Factor. Neuropsychopharmacology, 2016, 41, 2147-2159.	5.4	80
68	Estradiol Modulates Effort-Based Decision Making in Female Rats. Neuropsychopharmacology, 2012, 37, 390-401.	5.4	79
69	The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior. Neuroscience, 2007, 146, 1484-1494.	2.3	74
70	Systemic and local administration of estradiol into the prefrontal cortex or hippocampus differentially alters working memory. Neurobiology of Learning and Memory, 2006, 86, 293-304.	1.9	69
71	Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience and Biobehavioral Reviews, 2013, 37, 2125-2140.	6.1	68
72	Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. Journal of Neuroscience, 2020, 40, 4773-4787.	3.6	68

#	Article	IF	CITATIONS
73	Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 668-675.	4.8	65
74	Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology, 2011, 216, 525-535.	3.1	65
75	Dopaminergic regulation of limbic-striatal interplay. Journal of Psychiatry and Neuroscience, 2007, 32, 400-11.	2.4	64
76	Androgen Regulation of the Mesocorticolimbic System and Executive Function. Frontiers in Endocrinology, 2018, 9, 279.	3.5	59
77	Acute stress impairs set-shifting but not reversal learning. Behavioural Brain Research, 2013, 252, 222-229.	2.2	58
78	A selective role for dopamine in the nucleus accumbens of the rat in random foraging but not delayed spatial win-shift-based foraging. Behavioural Brain Research, 1996, 80, 161-168.	2.2	56
79	Prefrontal Cortical Gamma-Aminobutyric Acid Transmission and Cognitive Function: Drawing Links to Schizophrenia from Preclinical Research. Biological Psychiatry, 2015, 77, 929-939.	1.3	56
80	Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking. Neurobiology of Learning and Memory, 2017, 140, 92-105.	1.9	53
81	Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder. Behavioural Brain Research, 2015, 286, 256-264.	2.2	48
82	Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 2019, 103, 50-59.	6.1	48
83	Early life adversity promotes resilience to opioid addiction-related phenotypes in male rats and sex-specific transcriptional changes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
84	Alterations in behavioral flexibility by cannabinoid CB1 receptor agonists and antagonists. Psychopharmacology, 2006, 187, 245-259.	3.1	44
85	Perturbations in different forms of cost/benefit decision making induced by repeated amphetamine exposure. Psychopharmacology, 2009, 205, 189-201.	3.1	44
86	Differential Contributions of Nucleus Accumbens Subregions to Cue-Guided Risk/Reward Decision Making and Implementation of Conditional Rules. Journal of Neuroscience, 2018, 38, 1901-1914.	3.6	44
87	Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology, 2020, 45, 683-693.	5.4	44
88	Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	41
89	Noradrenergic modulation of risk/reward decision making. Psychopharmacology, 2015, 232, 2681-2696.	3.1	41
90	Disruption of spatial but not object-recognition memory by neurotoxic lesions of the dorsal hippocampus in rats Behavioral Neuroscience, 1997, 111, 1184-1196.	1.2	40

#	Article	IF	CITATIONS
91	Operant Procedures for Assessing Behavioral Flexibility in Rats. Journal of Visualized Experiments, 2015, , e52387.	0.3	39
92	Dopaminergic Circuitry and Risk/Reward Decision Making: Implications for Schizophrenia. Schizophrenia Bulletin, 2015, 41, 9-14.	4.3	38
93	Sex differences in response to amphetamine in adult Long–Evans rats performing a delay-discounting task. Pharmacology Biochemistry and Behavior, 2014, 118, 1-9.	2.9	35
94	Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology, 2016, 233, 121-136.	3.1	35
95	Prefrontal-hippocampal interactions supporting the extinction of emotional memories: the retrieval stopping model. Neuropsychopharmacology, 2022, 47, 180-195.	5.4	35
96	Prefrontal Cortical GABA Transmission Modulates Discrimination and Latent Inhibition of Conditioned Fear: Relevance for Schizophrenia. Neuropsychopharmacology, 2014, 39, 2473-2484.	5.4	34
97	DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. Neurobiology of Learning and Memory, 2019, 161, 1-11.	1.9	33
98	Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders. Neuropharmacology, 2016, 101, 279-290.	4.1	32
99	CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. ELife, 2020, 9, .	6.0	31
100	Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behavioural Brain Research, 2011, 225, 348-357.	2.2	25
101	Cooperative and dissociable involvement of the nucleus accumbens core and shell in the promotion and inhibition of actions during active and inhibitory avoidance. Neuropharmacology, 2018, 138, 57-71.	4.1	24
102	Alterations in effort-related decision-making induced by stimulation of dopamine D1, D2, D3, and corticotropin-releasing factor receptors in nucleus accumbens subregions. Psychopharmacology, 2019, 236, 2699-2712.	3.1	24
103	Ventral Pallidum GABA Neurons Mediate Motivation Underlying Risky Choice. Journal of Neuroscience, 2021, 41, 4500-4513.	3.6	24
104	Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making. ENeuro, 2018, 5, ENEURO.0422-18.2018.	1.9	24
105	Prefrontal cortical GABAergic and NMDA glutamatergic regulation of delayed responding. Neuropharmacology, 2017, 113, 10-20.	4.1	23
106	Involvement of the Ventral Pallidum in Working Memory Tasks With or Without a Delay. Annals of the New York Academy of Sciences, 1999, 877, 711-716.	3.8	22
107	Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology, 2016, 233, 2319-2327.	3.1	22
108	Basolateral amygdala – nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 98, 109830.	4.8	21

#	Article	IF	CITATIONS
109	Dopamine and hippocampal input to the nucleus accumbens play an essential role in the search for food in an unpredictable environment. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 277-286.	1.3	21
110	Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking. Learning and Memory, 2020, 27, 429-440.	1.3	20
111	The Abused Inhalant Toluene Impairs Medial Prefrontal Cortex Activity and Risk/Reward Decision-Making during a Probabilistic Discounting Task. Journal of Neuroscience, 2019, 39, 9207-9220.	3.6	19
112	Risk-based decision making in rats: Modulation by sex and amphetamine. Hormones and Behavior, 2020, 125, 104815.	2.1	18
113	Reversible lesions of the rhinal cortex produce delayed non-matching-to-sample deficits in rats. NeuroReport, 2000, 11, 351-354.	1.2	16
114	Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344Â× brown Norway rats. Neurobiology of Aging, 2018, 72, 134-146.	3.1	16
115	Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neuroscience and Biobehavioral Reviews, 2022, 133, 104503.	6.1	16
116	Repeated Amphetamine Exposure Disrupts Dopaminergic Modulation of Amygdala-Prefrontal Circuitry and Cognitive/Emotional Functioning. Journal of Neuroscience, 2011, 31, 11282-11294.	3.6	15
117	Regulation of sustained attention, false alarm responding and implementation of conditional rules by prefrontal GABAA transmission: comparison with NMDA transmission. Psychopharmacology, 2017, 234, 2777-2792.	3.1	14
118	Reward systems, cognition, and emotion: Introduction to the special issue. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 409-414.	2.0	14
119	Hippocampal neurogenesis promotes preference for future rewards. Molecular Psychiatry, 2021, 26, 6317-6335.	7.9	14
120	Strategy set-shifting and response inhibition in adult rats exposed to an environmental polychlorinated biphenyl mixture during adolescence. Neurotoxicology and Teratology, 2017, 63, 14-23.	2.4	13
121	LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields. Nature Communications, 2021, 12, 100.	12.8	13
122	Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology, 2021, 46, 1240-1251.	5.4	13
123	A role for neurogenesis in probabilistic reward learning Behavioral Neuroscience, 2020, 134, 283-295.	1.2	13
124	D-Cycloserine Facilitates Reversal in an Animal Model of Post-traumatic Stress Disorder. Behavioural Brain Research, 2018, 347, 332-338.	2.2	12
125	Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Hormones and Behavior, 2020, 120, 104689.	2.1	12
126	Distinct Medial Orbitofrontal–Striatal Circuits Support Dissociable Component Processes of Risk/Reward Decision-Making. Journal of Neuroscience, 2022, 42, 2743-2755.	3.6	12

#	Article	IF	CITATIONS
127	Alterations in time–place learning induced by lesions to the rat medial prefrontal cortex. Behavioural Processes, 2002, 59, 87-100.	1.1	11
128	Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology, 2020, 162, 107844.	4.1	9
129	Central CRF and acute stress differentially modulate probabilistic reversal learning in male and female rats. Behavioural Brain Research, 2021, 397, 112929.	2.2	9
130	Reply to 'Extrasynaptic dopamine and phasic neuronal activity'. Nature Neuroscience, 2004, 7, 199-199.	14.8	8
131	Noradrenaline and dopamine: sharing the Workload. Trends in Neurosciences, 2015, 38, 465-467.	8.6	8
132	Maternal sucrose consumption alters behaviour and steroids in adult rat offspring. Journal of Endocrinology, 2021, 251, 161-180.	2.6	8
133	Differential effects of corticotropin-releasing factor and acute stress on different forms of risk/reward decision-making. Neurobiology of Learning and Memory, 2020, 169, 107167.	1.9	6
134	Androgen synthesis inhibition increases behavioural flexibility and <scp>mPFC</scp> tyrosine hydroxylase in gonadectomized male rats. Journal of Neuroendocrinology, 2022, 34, e13128.	2.6	6
135	Disinhibition of the prefrontal cortex leads to brain-wide increases in neuronal activation that are modified by spatial learning. Brain Structure and Function, 2019, 224, 171-190.	2.3	5
136	Dorsomedial striatal contributions to different forms of risk/reward decision making. Neurobiology of Learning and Memory, 2021, 178, 107369.	1.9	5
137	Prefrontal NMDA Receptors and Cognition: Working 2B Remembered. Neuron, 2013, 77, 603-605.	8.1	4
138	Cannabinoid receptor type 1 antagonists alter aspects of risk/reward decision making independent of toluene-mediated effects. Psychopharmacology, 2022, 239, 1337-1347.	3.1	3
139	Regional specificity in dopamine signaling during rewardâ€related learningâ€`(Commentary on Aragona) Tj ETQq1	1 0.7843 2.6	14 rgBT /Ov
140	Dopamine Neurons, Input Integration, and Reward Prediction Errors: E Pluribus Unum. Neuron, 2016, 91, 1192-1194.	8.1	1
141	Differential effects of d- and l-enantiomers of govadine on distinct forms of cognitive flexibility and a comparison with dopaminergic drugs. Psychopharmacology, 2021, 238, 1069-1085.	3.1	1
142	Learning is a matter of history and relevance for lateral hypothalamus. Nature Neuroscience, 2021, 24, 295-296.	14.8	1
143	Contributions of Mesocorticolimbic Dopamine to Cognition and Executive Function. , 2009, , 215-229.		1
144	Review of Preparing for graduate study in psychology: 101 questions and answers Canadian Psychology, 2007, 48, 276-277.	2.1	0

#	Article	IF	CITATIONS
145	254. Dissociable Contributions by Prefrontal Cortical Gaba and Glutamate Transmission in Regulating Executive and Affective Functions Relevant to Schizophrenia. Biological Psychiatry, 2018, 83, S102-S103.	1.3	0