Rosa Krajmalnik-Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/509245/publications.pdf

Version: 2024-02-01

122 papers

14,092 citations

48 h-index

43973

21474 114 g-index

127 all docs

127 docs citations

times ranked

127

16379 citing authors

#	Article	IF	CITATIONS
1	Energetically Informed Niche Models of Hydrogenotrophs Detected in Sediments of Serpentinized Fluids of the Samail Ophiolite of Oman. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	10
2	Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. Journal of Hazardous Materials, 2022, 433, 128770.	6.5	15
3	Organic carbon metabolism is a main determinant of hydrogen demand and dynamics in anaerobic soils. Chemosphere, 2022, 303, 134877.	4.2	3
4	Long-Term Continuous Co-reduction of $1,1,1$ -Trichloroethane and Trichloroethene over Palladium Nanoparticles Spontaneously Deposited on H ₂ -Transfer Membranes. Environmental Science & En	4. 6	34
5	Chemical Oxygen Demand Can Be Converted to Gross Energy for Food Items Using a Linear Regression Model. Journal of Nutrition, 2021, 151, 445-453.	1.3	7
6	Carboxylates and alcohols production in an autotrophic hydrogenâ€based membrane biofilm reactor. Biotechnology and Bioengineering, 2021, 118, 2338-2347.	1.7	11
7	Increased expression of antibiotic-resistance genes in biofilm communities upon exposure to cetyltrimethylammonium bromide (CTAB) and other stress conditions. Science of the Total Environment, 2021, 765, 144264.	3.9	19
8	A Synergistic Platform for Continuous Co-removal of $1,1,1$ -Trichloroethane, Trichloroethene, and $1,4$ -Dioxane via Catalytic Dechlorination Followed by Biodegradation. Environmental Science & Environmental Science & Technology, 2021, 55, 6363-6372.	4.6	23
9	The Gut Microbiome in Autism: Study-Site Effects and Longitudinal Analysis of Behavior Change. MSystems, 2021, 6, .	1.7	28
10	The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols. Nutrients, 2021, 13, 1866.	1.7	14
11	An Ion Chromatography Method for Simultaneous Quantification of Chromate, Arsenate, Selenate, Perchlorate, and Other Inorganic Anions in Environmental Media. Environmental Engineering Science, 2021, 38, 626-634.	0.8	6
12	Developing a model for estimating the activity of colonic microbes after intestinal surgeries. PLoS ONE, 2021, 16, e0253542.	1.1	2
13	Protocol of the Snuggle Bug/Acurrucadito Study: a longitudinal study investigating the influences of sleep-wake patterns and gut microbiome development in infancy on rapid weight gain, an early risk factor for obesity. BMC Pediatrics, 2021, 21, 374.	0.7	4
14	The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site. Applied Microbiology and Biotechnology, 2021, 105, 6489-6497.	1.7	3
15	Surgical Menopause and Estrogen Therapy Modulate the Gut Microbiota, Obesity Markers, and Spatial Memory in Rats. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702628.	1.8	18
16	The Fecal Microbiome and Metabolome of Pitt Hopkins Syndrome, a Severe Autism Spectrum Disorder. MSystems, 2021, 6, e0100621.	1.7	8
17	Modeling Trichloroethene Reduction, Methanogenesis, and Homoacetogenesis in a H2-Based Biofilm. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	3
18	Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiology Ecology, 2020, 96, .	1.3	57

#	Article	IF	CITATIONS
19	Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans. Nutrients, 2020, 12, 3067.	1.7	21
20	Integrative and quantitative bioenergetics: Design of a study to assess the impact of the gut microbiome on host energy balance. Contemporary Clinical Trials Communications, 2020, 19, 100646.	0.5	15
21	Multivariate Analysis of Fecal Metabolites from Children with Autism Spectrum Disorder and Gastrointestinal Symptoms before and after Microbiota Transfer Therapy. Journal of Personalized Medicine, 2020, 10, 152.	1.1	21
22	Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy. MSphere, 2020, 5, .	1.3	67
23	Coupled electrokinetic and biological remediation method leads to improved treatment of chlorinated solvents at high sulfate, transport limited sites. Environmental Science: Water Research and Technology, 2020, 6, 2926-2937.	1.2	5
24	Synergistic Zerovalent Iron (Fe ⁰) and Microbiological Trichloroethene and Perchlorate Reductions Are Determined by the Concentration and Speciation of Fe. Environmental Science & Environmental Science & Technology, 2020, 54, 14422-14431.	4.6	23
25	Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. Npj Biofilms and Microbiomes, 2020, 6, 12.	2.9	57
26	Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Scientific Reports, 2020, 10, 2371.	1.6	18
27	The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2020, 23, 69-89.	2.9	19
28	Aflatoxin Exposure, Child Stunting, and Dysbiosis in the Intestinal Microbiome Among Children in Guatemala. Environmental Engineering Science, 2019, 36, 958-968.	0.8	17
29	Microbiota transplant therapy and autism: lessons for the clinic. Expert Review of Gastroenterology and Hepatology, 2019, 13, 1033-1037.	1.4	24
30	Multicycle Ozonation+Bioremediation for Soils Containing Residual Petroleum. Environmental Engineering Science, 2019, 36, 1443-1451.	0.8	10
31	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	13.5	701
32	Rapidly Processed Stool Swabs Approximate Stool Microbiota Profiles. MSphere, 2019, 4, .	1.3	19
33	Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Scientific Reports, 2019, 9, 5821.	1.6	414
34	A Fruitful Discovery: Can Gut Bacteria Control Hyperactive Behavior?. Molecular Cell, 2019, 73, 395-397.	4.5	2
35	Multivariate Analysis of Plasma Metabolites in Children with Autism Spectrum Disorder and Gastrointestinal Symptoms Before and After Microbiota Transfer Therapy. Processes, 2019, 7, 806.	1.3	11
36	Autonomous screening of groundwater remediation technologies in the subsurface using the In Situ Microcosm Array (ISMA). Journal of Hazardous Materials, 2019, 367, 668-675.	6.5	2

#	Article	IF	Citations
37	Effects of light intensity on soluble microbial products produced by Synechocystis sp. PCC 6803 and associated heterotrophic communities. Algal Research, 2019, 38, 101409.	2.4	4
38	Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 2018, 49, 121-131.	1.0	249
39	Impacts of moisture content during ozonation of soils containing residual petroleum. Journal of Hazardous Materials, 2018, 344, 1101-1108.	6.5	12
40	Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation. Biotechnology and Bioengineering, 2018, 115, 341-350.	1.7	33
41	Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiology, 2018, 18, 210.	1.3	51
42	Tracking Personal Health-Environment Interaction with Novel Mobile Sensing Devices. Sensors, 2018, 18, 2670.	2.1	6
43	Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph. FEMS Microbiology Ecology, 2018, 94, .	1.3	18
44	Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor. Frontiers in Microbiology, 2018, 9, 3268.	1.5	49
45	Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5, 10.	4.9	901
46	pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. MSphere, 2017, 2, .	1.3	105
47	Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. FEMS Microbiology Ecology, 2017, 93, .	1.3	31
48	Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME Journal, 2017, 11, 2047-2058.	4.4	121
49	Interpreting Interactions between Ozone and Residual Petroleum Hydrocarbons in Soil. Environmental Science & Environmental Sci	4.6	38
50	Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. Water Research, 2017, 125, 341-349.	5.3	28
51	Coupling Bioflocculation of <i>Dehalococcoides mccartyi</i> to High-Rate Reductive Dehalogenation of Chlorinated Ethenes. Environmental Science & Envi	4.6	18
52	Enhancing biodegradation of C16-alkyl quaternary ammonium compounds using an oxygen-based membrane biofilm reactor. Water Research, 2017, 123, 825-833.	5.3	57
53	The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures. Biotechnology for Biofuels, 2017, 10, 220.	6.2	40
54	Archaea and Bacteria Acclimate to High Total Ammonia in a Methanogenic Reactor Treating Swine Waste. Archaea, 2016, 2016, 1-10.	2.3	26

#	Article	IF	Citations
55	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016, 167, 1469-1480.e12.	13.5	2,399
56	Shifting the balance of fermentation products between hydrogen and volatile fatty acids: microbial community structure and function. FEMS Microbiology Ecology, 2016, 92, fiw195.	1.3	14
57	Ozone enhances biodegradability of heavy hydrocarbons in soil. Journal of Environmental Engineering and Science, 2016, 11, 7-17.	0.3	32
58	Impact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities. MSphere, 2016, 1 , .	1.3	14
59	Hydrogenâ€fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm. Biotechnology and Bioengineering, 2016, 113, 1736-1744.	1.7	36
60	Palladium Recovery in a H ₂ -Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions. Environmental Science & Emp; Technology, 2016, 50, 2546-2555.	4.6	72
61	The source of inoculum drives bacterial community structure in Synechocystis sp. PCC6803-based photobioreactors. Algal Research, 2016, 13, 109-115.	2.4	6
62	Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microbial Ecology in Health and Disease, 2015, 26, 26878.	3.8	56
63	Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microbial Ecology in Health and Disease, 2015, 26, 26914.	3.8	105
64	Genomes of Geoalkalibacter ferrihydriticus Z-0531 $<$ sup $>$ T $<$ sup $>$ and Geoalkalibacter subterraneus Red1 $<$ sup $>$ T $<$ sup $>$, Two Haloalkaliphilic Metal-Reducing Deltaproteobacteria. Genome Announcements, 2015, 3, .	0.8	6
65	Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and after treatment with lubiprostone. Anaerobe, 2015, 33, 33-41.	1.0	49
66	Effects of phosphate limitation on soluble microbial products and microbial community structure in semiâ€continuous <i>Synechocystis</i> àêbased photobioreactors. Biotechnology and Bioengineering, 2015, 112, 1761-1769.	1.7	23
67	Uranium removal and microbial community inÂaÂH 2 -based membrane biofilm reactor. Water Research, 2014, 64, 255-264.	5.3	86
68	Coupling dark metabolism to electricity generation using photosynthetic cocultures. Biotechnology and Bioengineering, 2014, 111, 223-231.	1.7	28
69	Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Applied Microbiology and Biotechnology, 2014, 98, 2729-2737.	1.7	28
70	Method for Assessing Source Zone Natural Depletion at Chlorinated Aliphatic Spill Sites. Ground Water Monitoring and Remediation, 2014, 34, 60-70.	0.6	4
71	Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell. Bioresource Technology, 2014, 169, 169-174.	4.8	31
72	Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Science of the Total Environment, 2014, 497-498, 250-259.	3.9	66

#	Article	IF	Citations
73	Pyrosequencing Analysis Yields Comprehensive Assessment of Microbial Communities in Pilot-Scale Two-Stage Membrane Biofilm Reactors. Environmental Science & Environmental Science & 2014, 48, 7511-7518.	4.6	37
74	Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors. Water Research, 2014, 54, 115-122.	5.3	45
7 5	Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration. Water Research, 2014, 55, 215-224.	5.3	57
76	The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures. Journal of Biotechnology, 2014, 182-183, 11-18.	1.9	52
77	Simultaneous Determination of Chlorinated Ethenes and Ethene in Groundwater Using Headspace Solid-Phase Microextraction with Gas Chromatography. Journal of Chromatographic Science, 2014, 52, 137-142.	0.7	3
78	Selective Enrichment Yields Robust Ethene-Producing Dechlorinating Cultures from Microcosms Stalled at cis-Dichloroethene. PLoS ONE, 2014, 9, e100654.	1.1	33
79	Perchlorate reduction from a highly contaminated groundwater in the presence of sulfateâ€reducing bacteria in a hydrogenâ€fed biofilm. Biotechnology and Bioengineering, 2013, 110, 3139-3147.	1.7	17
80	Toward Effective Probiotics for Autism and Other Neurodevelopmental Disorders. Cell, 2013, 155, 1446-1448.	13.5	97
81	A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors. Biotechnology and Bioengineering, 2013, 110, 763-772.	1.7	43
82	The role of anaerobic sludge recycle in improving anaerobic digester performance. Bioresource Technology, 2013, 128, 731-737.	4.8	17
83	Lightâ€responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria. Biotechnology and Bioengineering, 2013, 110, 1020-1027.	1.7	25
84	Phylogenetic analysis of nitrate- and sulfate-reducing bacteria in a hydrogen-fed biofilm. FEMS Microbiology Ecology, 2013, 85, 158-167.	1.3	43
85	Effects of Multiple Electron Acceptors on Microbial Interactions in a Hydrogen-Based Biofilm. Environmental Science & Environm	4.6	48
86	Using a Two-Stage Hydrogen-Based Membrane Biofilm Reactor (MBfR) to Achieve Complete Perchlorate Reduction in the Presence of Nitrate and Sulfate. Environmental Science & Env	4.6	78
87	Modeling trichloroethene reduction in a hydrogen-based biofilm. Water Science and Technology, 2013, 68, 1158-1163.	1.2	3
88	Generation of High Current Densities by Pure Cultures of Anode-Respiring <i>Geoalkalibacter</i> spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells. MBio, 2013, 4, e00144-13.	1.8	82
89	Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE, 2013, 8, e68322.	1.1	709
90	Quantitative PCR for Tracking the Megaplasmid-Borne Biodegradation Potential of a Model Sphingomonad. Applied and Environmental Microbiology, 2012, 78, 4493-4496.	1.4	7

#	Article	IF	Citations
91	Interactions between Nitrate-Reducing and Sulfate-Reducing Bacteria Coexisting in a Hydrogen-Fed Biofilm. Environmental Science & Echnology, 2012, 46, 11289-11298.	4.6	82
92	A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 1: Model Development and Numerical Solution. Environmental Science & Echnology, 2012, 46, 1598-1607.	4.6	45
93	A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate, Part 2: Parameter Optimization and Results and Discussion. Environmental Science & Enp; Technology, 2012, 46, 1608-1615.	4.6	45
94	Enrichment and Analysis of Anode-Respiring Bacteria from Diverse Anaerobic Inocula. Environmental Science & Environmental Scie	4.6	94
95	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	1.1	596
96	Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microbial Cell Factories, 2012, 11, 128.	1.9	44
97	The role of homoacetogenic bacteria as efficient hydrogen scavengers in microbial electrochemical cells (MXCs). Water Science and Technology, 2012, 65, 1-6.	1.2	23
98	Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H ₂ in a membrane biofilm reactor. Biotechnology and Bioengineering, 2012, 109, 2200-2210.	1.7	49
99	Using electron balances and molecular techniques to assess trichoroetheneâ€induced shifts to a dechlorinating microbial community. Biotechnology and Bioengineering, 2012, 109, 2230-2239.	1.7	27
100	Fate of Sucralose During Wastewater Treatment. Environmental Engineering Science, 2011, 28, 325-331.	0.8	75
101	2,4,5-Trichlorophenol Degradation Using a Novel TiO ₂ -Coated Biofilm Carrier: Roles of Adsorption, Photocatalysis, and Biodegradation. Environmental Science & Eamp; Technology, 2011, 45, 8359-8367.	4.6	110
102	Interactions between Perchlorate and Nitrate Reductions in the Biofilm of a Hydrogen-Based Membrane Biofilm Reactor. Environmental Science & Environmental Science & 10155-10162.	4.6	136
103	Integrating High-Throughput Pyrosequencing and Quantitative Real-Time PCR to Analyze Complex Microbial Communities. Methods in Molecular Biology, 2011, 733, 107-128.	0.4	22
104	Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresource Technology, 2011, 102, 11218-11225.	4.8	63
105	Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene. Applied Microbiology and Biotechnology, 2011, 92, 1063-1071.	1.7	50
106	Hydrogen consumption in microbial electrochemical systems (MXCs): The role of homo-acetogenic bacteria. Bioresource Technology, 2011, 102, 263-271.	4.8	91
107	Microbial Electrochemical Cells as a Research Tool to Probe Microbial and Biofilm Kinetics. Proceedings of the Water Environment Federation, 2010, 2010, 52-60.	0.0	O
108	Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering, 2010, 105, 69-78.	1.7	148

#	Article	IF	Citations
109	A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 2010, 34, 3-17.	3.9	506
110	Effect of Dechlorination and Sulfate Reduction on the Microbial Community Structure in Denitrifying Membrane-Biofilm Reactors. Environmental Science & Environmental Science & 2010, 44, 5159-5164.	4.6	50
111	Syntrophic interactions among anode respiring bacteria (ARB) and Nonâ€ARB in a biofilm anode: electron balances. Biotechnology and Bioengineering, 2009, 103, 513-523.	1.7	208
112	Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2365-2370.	3.3	1,641
113	Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Research, 2009, 43, 4517-4526.	5.3	126
114	Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization. Environmental Science & Environmental Science & 2009, 43, 9519-9524.	4.6	442
115	Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews Microbiology, 2008, 6, 604-612.	13.6	107
116	Gut Microbiota and Its Possible Relationship With Obesity. Mayo Clinic Proceedings, 2008, 83, 460-469.	1.4	499
117	Bioreduction of Trichloroethene Using a Hydrogen-Based Membrane Biofilm Reactor. Environmental Science & Environmental Environmental Science & Environmental Environme	4.6	66
118	Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiology Ecology, 2007, 59, 206-214.	1.3	51
119	Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 2005, 7, 1442-1450.	1.8	237
120	Multiple Reductive-Dehalogenase-Homologous Genes Are Simultaneously Transcribed during Dechlorination by Dehalococcoides- Containing Cultures. Applied and Environmental Microbiology, 2005, 71, 8257-8264.	1.4	129
121	Multiple Nonidentical Reductive-Dehalogenase-Homologous Genes Are Common in Dehalococcoides. Applied and Environmental Microbiology, 2004, 70, 5290-5297.	1.4	129
122	Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1. Applied and Environmental Microbiology, 2004, 70, 6347-6351.	1.4	227