
Dong Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092262/publications.pdf Version: 2024-02-01

DONG XIANG

#	Article	IF	CITATIONS
1	Molecular-Scale Electronics: From Concept to Function. Chemical Reviews, 2016, 116, 4318-4440.	47.7	1,014
2	Mechanically Controllable Break Junctions for Molecular Electronics. Advanced Materials, 2013, 25, 4845-4867.	21.0	192
3	High-Yield Functional Molecular Electronic Devices. ACS Nano, 2017, 11, 6511-6548.	14.6	136
4	Three-Terminal Single-Molecule Junctions Formed by Mechanically Controllable Break Junctions with Side Gating. Nano Letters, 2013, 13, 2809-2813.	9.1	103
5	Redoxâ€Induced Asymmetric Electrical Characteristics of Ferroceneâ€Alkanethiolate Molecular Devices on Rigid and Flexible Substrates. Advanced Functional Materials, 2014, 24, 2472-2480.	14.9	68
6	The synthesis and electrochemical performance of core-shell structured Ni-Al layered double hydroxide/carbon nanotubes composites. Electrochimica Acta, 2016, 222, 185-193.	5.2	45
7	Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. ACS Nano, 2016, 10, 9695-9702.	14.6	43
8	Advance of Mechanically Controllable Break Junction for Molecular Electronics. Topics in Current Chemistry, 2017, 375, 61.	5.8	38
9	Towards single-molecule optoelectronic devices. Science China Chemistry, 2018, 61, 1368-1384.	8.2	36
10	Gap size dependent transition from direct tunneling to field emission in single molecule junctions. Chemical Communications, 2011, 47, 4760.	4.1	34
11	Origin of discrete current fluctuations in a single molecule junction. Nanoscale, 2014, 6, 13396-13401.	5.6	33
12	Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions. Physical Review Applied, 2018, 9, .	3.8	31
13	Shaping the Atomicâ€Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices. Small, 2018, 14, e1703815.	10.0	28
14	Molecular Orbital Gating Surface-Enhanced Raman Scattering. ACS Nano, 2018, 12, 11229-11235.	14.6	27
15	Atomic switches of metallic point contacts by plasmonic heating. Light: Science and Applications, 2019, 8, 34.	16.6	26
16	Unidirectional Real-Time Photoswitching of Diarylethene Molecular Monolayer Junctions with Multilayer Graphene Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 11645-11653.	8.0	23
17	Investigation of inelastic electron tunneling spectra of metal-molecule-metal junctions fabricated using direct metal transfer method. Applied Physics Letters, 2015, 106, .	3.3	18
18	Crystal Size Effect on Carrier Transport of Microscale Perovskite Junctions via Soft Contact. Nano Letters, 2020, 20, 8640-8646.	9.1	18

DONG XIANG

#	Article	IF	CITATIONS
19	A new approach for high-yield metal–molecule–metal junctions by direct metal transfer method. Nanotechnology, 2015, 26, 025601.	2.6	17
20	<i>In situ</i> photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horizons, 2021, 6, 386-392.	8.0	17
21	Mechanical modulation of terahertz wave via buckled carbon nanotube sheets. Optics Express, 2018, 26, 28738.	3.4	17
22	In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today, 2021, 39, 101226.	11.9	16
23	Molecular Junctions Bridged by Metal Ion Complexes. Chemistry - A European Journal, 2011, 17, 13166-13169.	3.3	15
24	Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode. AIP Advances, 2015, 5, .	1.3	15
25	Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electronic Advances, 2022, 5, 210094-210094.	13.3	12
26	Influence of Cu on Ga diffusion during post-selenizing the electrodeposited Cu/In/Ga metallic precursor process. Solar Energy Materials and Solar Cells, 2018, 182, 92-97.	6.2	11
27	An on-chip hybrid plasmonic light steering concentrator with â^1⁄496% coupling efficiency. Nanoscale, 2018, 10, 5097-5104.	5.6	9
28	Stable high absorption metamaterial for wide-angle incidence of terahertz wave. Journal of Modern Optics, 2014, 61, 621-625.	1.3	8
29	Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method. Journal of Physics Condensed Matter, 2016, 28, 094003.	1.8	7
30	Real-Time Conformational Change Monitoring of G-Quadruplex Using Capillary-Based Biocompatible Whispering Gallery Mode Microresonator. IEEE Sensors Journal, 2020, 20, 12558-12564.	4.7	6
31	Reversible Rectification of Microscale Ferroelectric Junctions Employing Liquid Metal Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 29885-29893.	8.0	6
32	Advance of Mechanically Controllable Break Junction for Molecular Electronics. Topics in Current Chemistry Collections, 2019, , 45-86.	0.5	5
33	Molecular Devices: Shaping the Atomic cale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices (Small 15/2018). Small, 2018, 14, 1870066.	10.0	3
34	Molecular Electronics: Mechanically Controllable Break Junctions for Molecular Electronics (Adv.) Tj ETQq0 0 0 rş	gBT_/Overlo 21.0	ock 10 Tf 50 2
35	A crucial step for molecular-scale electronics: a stable and reversible single-molecule switch. National Science Review, 2017, 4, 666-667.	9.5	2

On-Chip Break Junctions and Period-Adjustable Grating Driven by Thermal Stress. Nano, 2017, 12, 1750139. 1.0 2

DONG XIANG

#	Article	IF	CITATIONS
37	Molecular Electronics: Redox-Induced Asymmetric Electrical Characteristics of Ferrocene-Alkanethiolate Molecular Devices on Rigid and Flexible Substrates (Adv. Funct. Mater.) Tj ETQq1 1 0.78	4 3 4. 9 rgBT	Dverlock 1
38	Polarization-dependent colored conical emission in a quadratically nonlinear medium. Optics Communications, 2012, 285, 3316-3319.	2.1	0
39	Single-molecule devices reveal step-by-step dynamics of hydrogen bonds. Science China Chemistry, 2018, 61, 639-640.	8.2	0
40	A Mechanical Single-molecule Potentiometer Based on Foldamer. Chemical Research in Chinese Universities, 2021, 37, 335-336.	2.6	0