Michael Schwarze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	6.6	646
2	Active Mixedâ€Valent MnO _{<i>x</i>} Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles. Angewandte Chemie - International Edition, 2013, 52, 13206-13210.	7.2	267
3	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	7.2	261
4	High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis, 2015, 5, 2017-2027.	5.5	249
5	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	2.2	206
6	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
7	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	7.2	171
8	A Cobaltâ€Based Amorphous Bifunctional Electrocatalysts for Waterâ€Splitting Evolved from a Singleâ€Source Lazulite Cobalt Phosphate. Advanced Functional Materials, 2019, 29, 1808632.	7.8	157
9	Nanostructured Manganese Oxides as Highly Active Water Oxidation Catalysts: A Boost from Manganese Precursor Chemistry. ChemSusChem, 2014, 7, 2202-2211.	3.6	110
10	Donor–Acceptorâ€Type Heptazineâ€Based Polymer Networks for Photocatalytic Hydrogen Evolution. Energy Technology, 2016, 4, 744-750.	1.8	102
11	Mesoporous Carbon Nitrideâ€Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2015, 8, 1404-1410.	3.6	98
12	Hydrogen Evolution Reaction in a Largeâ€Scale Reactor using a Carbon Nitride Photocatalyst under Natural Sunlight Irradiation. Energy Technology, 2015, 3, 1014-1017.	1.8	97
13	Quantification of photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15, 3466.	1.3	80
14	Micellar-enhanced ultrafiltration (MEUF) – state of the art. Environmental Science: Water Research and Technology, 2017, 3, 598-624.	1.2	70
15	Microemulsion systems for catalytic reactions and processes. Catalysis Science and Technology, 2015, 5, 24-33.	2.1	63
16	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	1.6	57
17	<i>In situ</i> observation of pH change during water splitting in neutral pH conditions: impact of natural convection driven by buoyancy effects. Energy and Environmental Science, 2020, 13, 5104-5116.	15.6	53
18	Rhodium catalyzed hydrogenation reactions in aqueous micellar systems as green solvents. RSC Advances, 2011, 1, 474.	1.7	50

#	Article	IF	CITATIONS
19	Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. Journal of Membrane Science, 2015, 478, 140-147.	4.1	50
20	Visible light driven non-sacrificial water oxidation and dye degradation with silver phosphates: multi-faceted morphology matters. New Journal of Chemistry, 2014, 38, 1942-1945.	1.4	47
21	Biopolymers for dye removal via foam separation. Separation and Purification Technology, 2017, 188, 451-457.	3.9	40
22	Support effect in the preparation of supported metal catalysts <i>via</i> microemulsion. RSC Advances, 2014, 4, 50955-50963.	1.7	38
23	Photocatalytic reduction of CO2 to hydrocarbons by using photodeposited Pt nanoparticles on carbon-doped titania. Catalysis Today, 2019, 328, 8-14.	2.2	38
24	Recent developments in hydrogenation and hydroformylation in surfactant systems. Catalysis Today, 2015, 247, 55-63.	2.2	37
25	Explosion characteristics of mildly flammable refrigerants ignited with high-energy ignition sources in closed systems. International Journal of Refrigeration, 2018, 90, 249-256.	1.8	31
26	Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. Journal of Membrane Science, 2015, 493, 120-133.	4.1	28
27	Selection of systems for catalyst recovery by micellar enhanced ultrafiltration. Chemical Engineering and Processing: Process Intensification, 2009, 48, 356-363.	1.8	27
28	Catalytic isomerization of hydrophobic allylarenes in aqueous microemulsions. Journal of Molecular Catalysis A, 2011, 335, 8-13.	4.8	26
29	Oleylethoxycarboxylate – An efficient surfactant for copper extraction and surfactant recycling via micellar enhanced ultrafiltration. Journal of Colloid and Interface Science, 2014, 421, 184-190.	5.0	26
30	A new method to synthesize very active and stable supported metal Pt catalysts: thermo-destabilization of microemulsions. Journal of Materials Chemistry, 2012, 22, 11605.	6.7	25
31	Morphologyâ€Dependent Activities of Silver Phosphates: Visible‣ight Water Oxidation and Dye Degradation. ChemPlusChem, 2016, 81, 1068-1074.	1.3	24
32	Urea and green tea like precursors for the preparation of g-C3N4 based carbon nanomaterials (CNMs) composites as photocatalysts for photodegradation of pollutants under UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112596.	2.0	23
33	Dependence of the Heck coupling in aqueous microemulsion by supported palladium acetate on the surfactant and on the hydrophobicity of the support. Journal of Molecular Catalysis A, 2010, 323, 65-69.	4.8	22
34	Catalytic Reactions in Surfactant Systems:Product Isolation and Catalyst Recycling. Industrial & Engineering Chemistry Research, 2010, 49, 1098-1104.	1.8	22
35	Micellar Solutions and Microemulsions as Media for Catalytic Reactions. Chemie-Ingenieur-Technik, 2011, 83, 1343-1355.	0.4	22
36	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19950-19956.	1.6	22

#	Article	IF	CITATIONS
37	Catalytic Hydrogenation of Dimethyl Itaconate in a Waterâ `Cyclohexaneâ `Triton X-100 Microemulsion in Comparison to a Biphasic System. Industrial & Engineering Chemistry Research, 2008, 47, 7586-7592.	1.8	21
38	Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions. Catalysts, 2014, 4, 256-275.	1.6	21
39	A novel process concept for the three step Boscalid $\hat{A}^{ extsf{@}}$ synthesis. RSC Advances, 2016, 6, 58279-58287.	1.7	21
40	Stirred cell ultrafiltration of aqueous micellar TX-100 solutions. Separation and Purification Technology, 2010, 74, 21-27.	3.9	20
41	Superior catalyst recycling in surfactant based multiphase systems – Quo vadis catalyst complex?. Chemical Engineering and Processing: Process Intensification, 2016, 99, 155-166.	1.8	20
42	Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Separation and Purification Technology, 2018, 199, 20-26.	3.9	19
43	Antioxidant as Structure Directing Agent in Nanocatalyst Preparation. Case Study: Catalytic Activity of Supported Pt Nanocatalyst in Levulinic Acid Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 2460-2470.	1.8	19
44	Micellar enhanced ultrafiltration of a rhodium catalyst. Journal of Membrane Science, 2012, 421-422, 165-171.	4.1	18
45	Impact of the reaction conditions on the photocatalytic reduction of water on mesoporous polymeric carbon nitride under sunlight irradiation. International Journal of Hydrogen Energy, 2014, 39, 10108-10120.	3.8	18
46	Efficient Advanced Oxidation Process (AOP) for Photocatalytic Contaminant Degradation Using Exfoliated Metal-Free Graphitic Carbon Nitride and Visible Light-Emitting Diodes. Catalysts, 2021, 11, 662.	1.6	18
47	Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions. Nanoscale, 2013, 5, 796-805.	2.8	17
48	Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Holeâ€Transfer Agents. ChemSusChem, 2021, 14, 306-312.	3.6	17
49	Catalytic Reactions in Aqueous Surfactant-Free Multiphase Emulsions. Industrial & Engineering Chemistry Research, 2016, 55, 12765-12775.	1.8	16
50	Quasi-Homogeneous Hydrogenation with Platinum and Palladium Nanoparticles Stabilized by Dendritic Core–Multishell Architectures. Langmuir, 2011, 27, 6511-6518.	1.6	15
51	Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112182.	2.0	15
52	Photocatalytic Degradation of Phenol Using Photodeposited Pt Nanoparticles on Titania. Journal of Nanoscience and Nanotechnology, 2020, 20, 1056-1065.	0.9	15
53	Homogeneous Stabilization of Pt Nanoparticles in Dendritic Core–Multishell Architectures: Application in Catalytic Hydrogenation Reactions and Recycling. ChemCatChem, 2010, 2, 863-870.	1.8	14
54	Investigation of sol–gel supported palladium catalysts for Heck coupling reactions in o/w-microemulsions. Journal of Molecular Catalysis A, 2014, 393, 210-221.	4.8	14

#	Article	IF	CITATIONS
55	Enantioselective hydrogenation of itaconic acid and its derivates with sol–gel immobilized Rh/BPPM catalysts. Journal of Molecular Catalysis A, 2013, 366, 359-367.	4.8	13
56	Applying thermo-destabilization of microemulsions as a new method for co-catalyst loading on mesoporous polymeric carbon nitride – towards large scale applications. RSC Advances, 2014, 4, 50017-50026.	1.7	13
57	XPS studies on dispersed and immobilised carbon nitrides used for dye degradation. Photochemical and Photobiological Sciences, 2019, 18, 1833-1839.	1.6	13
58	Disproportionation of hydrophobic dihydroarenes by recyclable rhodium and palladium catalysts in aqueous microemulsions. Journal of Molecular Catalysis A, 2011, 351, 46-51.	4.8	12
59	Comparison of positively charged polymer species and cationic surfactants for methyl orange removal via polyelectrolyte and micellar enhanced ultrafiltration. Journal of Water Process Engineering, 2020, 36, 101287.	2.6	12
60	Catalytic transfer hydrogenation of hydrophobic substrates by water-insoluble hydrogen donors in aqueous microemulsions. Journal of Molecular Catalysis A, 2013, 366, 210-214.	4.8	11
61	Cyclotrimerization of alkynes vs. ketone formation in aqueous microemulsion. Journal of Molecular Catalysis A, 2014, 382, 93-98.	4.8	11
62	Investigation of phase behaviour of selected chemical reaction mixtures in microemulsions for technical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 49-58.	2.3	11
63	Hydrogenation of Itaconic Acid in Micellar Solutions: Catalyst Recycling with Cloud Point Extraction?. Industrial & Engineering Chemistry Research, 2019, 58, 2445-2453.	1.8	11
64	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	4.3	11
65	Partition Coefficients of Itaconates in Aqueous-Micellar Solutions: Measurements and Predictions with COSMO-RS. Industrial & amp; Engineering Chemistry Research, 2012, 51, 1846-1852.	1.8	10
66	Characterization of Water/Sucrose Laurate/ <i>n</i> â€Propanol/Allylbenzene Microemulsions. Journal of Surfactants and Detergents, 2012, 15, 505-512.	1.0	10
67	Exploring the Mechanism of Peroxodisulfate Activation with Silver Metavanadate to Generate Abundant Reactive Oxygen Species. Advanced Sustainable Systems, 2021, 5, 2000288.	2.7	10
68	Highly Active TiO2 Photocatalysts for Hydrogen Production through a Combination of Commercial TiO2 Material Selection and Platinum Co-Catalyst Deposition Using a Colloidal Approach with Green Reductants. Catalysts, 2021, 11, 1027.	1.6	10
69	Verteilungsgleichgewichte von Liganden in mizellaren Lösungsmittelsystemen. Chemie-Ingenieur-Technik, 2016, 88, 119-127.	0.4	9
70	Alkaline Hydrolysis of Methyl Decanoate in Surfactant-Based Systems. Journal of Organic Chemistry, 2018, 83, 7398-7406.	1.7	9
71	Adsorption and filtration behaviour of non-ionic surfactants during reverse micellar-enhanced ultrafiltration. Journal of Membrane Science, 2013, 433, 80-87.	4.1	7
72	Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol–gel entrapped catalysts. Journal of Molecular Catalysis A, 2013, 380, 90-93.	4.8	7

#	Article	IF	CITATIONS
73	Partition Coefficients for Continuous Micellar Reaction Processes. Chemical Engineering and Technology, 2011, 34, 1899-1908.	0.9	6
74	Catalysis in Modified Liquid‣iquid Multiphase Systems. Chemie-Ingenieur-Technik, 2012, 84, 1861-1872.	0.4	6
75	New composite material based on Kaolinite, cement, TiO2 for efficient removal of phenol by photocatalysis. Environmental Science and Pollution Research, 2021, 28, 35991-36003.	2.7	6
76	Use of Cellulose for the Production of Photocatalytic Films for Hydrogen Evolution Along the Lines of Paper Production. Energy Technology, 2022, 10, 2100525.	1.8	6
77	Surface and aggregation properties of a plant-oil derived biosurfactant. Colloids and Surfaces B: Biointerfaces, 2019, 174, 521-527.	2.5	5
78	Recycling of Catalysts from Surfactant Systems. Chemie-Ingenieur-Technik, 2021, 93, 31-41.	0.4	5
79	Manganese sulfide enables the formation of a highly active β-MnOOH electrocatalyst for effective alkaline water oxidation. Materials Today Chemistry, 2022, 24, 100905.	1.7	5
80	Development of a Reactor for Standardized Quantification of the Photocatalytic Hydrogen Production. Chemie-Ingenieur-Technik, 2013, 85, 500-507.	0.4	4
81	Pd@Al ₂ O ₃ atalyzed Hydrogenation of Allylbenzene to Propylbenzene in Methanol and Aqueous Micellar Solutions. Chemical Engineering and Technology, 2015, 38, 2291-2298.	0.9	4
82	A composite of clay, cement, and wood as natural support material for the immobilization of commercial titania (P25, P90, PC500, C-TiO2) towards photocatalytic phenol degradation. Water Science and Technology, 2020, 81, 1882-1893.	1.2	4
83	Immobilization of TiO2 Semiconductor Nanoparticles onto Posidonia Oceanica Fibers for Photocatalytic Phenol Degradation. Water (Switzerland), 2021, 13, 2948.	1.2	4
84	Photocatalytic hydrogenation of acetophenone on a titanium dioxide cellulose film. RSC Advances, 2022, 12, 7055-7065.	1.7	4
85	Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129159.	2.3	4
86	Sol-gel immobilized catalyst systems for tandem transformations with trans-stilbene as an intermediate. Catalysis Communications, 2014, 53, 1-4.	1.6	3
87	Use of RSM for the multivariate, simultaneous multiobjective optimization of the operating conditions of aliphatic carboxylic acids ion-exclusion chromatography column: Quantitative study of hydrodynamic, isotherm, and thermodynamic behavior. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2018. 1083. 146-159.	1.2	3
88	Comparison of Commercial Nanosized Titania Particles for the Degradation of Diclofenac. Journal of Nanoscience and Nanotechnology, 2018, 18, 7952-7959.	0.9	3
89	<i>Bombyx mori</i> silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels. Beilstein Journal of Nanotechnology, 2018, 9, 187-204.	1.5	3
90	Volumetric and Diffusion Properties of Water/Surfactant/ <i>n</i> -Propanol/4-Allylanisole Micellar Systems. Tenside, Surfactants, Detergents, 2011, 48, 400-407.	0.5	3

#	Article	IF	CITATIONS
91	Insights into the light-driven hydrogen evolution reaction of mesoporous graphitic carbon nitride decorated with Pt or Ru nanoparticles. Dalton Transactions, 2022, 51, 731-740.	1.6	3
92	Non-ionic Surfactants Applied in Catalytic Hydrogenations. Chemie-Ingenieur-Technik, 2008, 80, 1265-1265.	0.4	0
93	Kontinuierliche Hydrierung in wÄ s srig-mizellarer LĶsung. Chemie-Ingenieur-Technik, 2008, 80, 1268-1268.	0.4	0
94	Reaktionen in mizellaren Systemen: Vorhersage von Verteilungskoeffizienten. Chemie-Ingenieur-Technik, 2009, 81, 1069-1070.	0.4	0
95	Mizellare Lösungen als Reaktionsmedien für die Katalyse. Chemie-Ingenieur-Technik, 2010, 82, 1338-1338.	0.4	0
96	Influence of Non–ionic Surfactants on Reverse Micellar–enhanced Ultrafiltration. Procedia Engineering, 2012, 44, 1692-1694.	1.2	0
97	REMOVED: Process Intensification Through Micellar Enhanced Ultrafiltration. Procedia Engineering, 2012, 44, 1695-1697.	1.2	0
98	Synthese von Boscalid in tensidbasierten Medien. Chemie-Ingenieur-Technik, 2014, 86, 1492-1493.	0.4	0
99	Introduction to the Reinhard SchomÄeker Festschrift. Industrial & Engineering Chemistry Research, 2019, 58, 2407-2408.	1.8	Ο
100	TiO2 Supported on Clay–Cement Hybrid Materials and Wood Fibers as Photocatalyst for Phenol Photodegradation. Environmental Science and Engineering, 2021, , 1485-1490.	0.1	0