
## **Claudia Cafarchia**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092193/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nature<br>Protocols, 2006, 1, 3121-3128.                                                                                        | 5.5 | 233       |
| 2  | Malassezia ecology, pathophysiology, and treatment. Medical Mycology, 2018, 56, S10-S25.                                                                                                                              | 0.3 | 188       |
| 3  | Malassezia Infections in Humans and Animals: Pathophysiology, Detection, and Treatment. PLoS<br>Pathogens, 2015, 11, e1004523.                                                                                        | 2.1 | 167       |
| 4  | Occurrence and Population Size of Malassezia spp. in the External Ear Canal of Dogs and Cats Both<br>Healthy and with Otitis. Mycopathologia, 2005, 160, 143-149.                                                     | 1.3 | 90        |
| 5  | Isolation of Microsporum canis from the hair coat of pet dogs and cats belonging to owners diagnosed with M. canis tinea corporis. Veterinary Dermatology, 2006, 17, 327-331.                                         | 0.4 | 87        |
| 6  | Molecular epidemiology, phylogeny and evolution of dermatophytes. Infection, Genetics and Evolution, 2013, 20, 336-351.                                                                                               | 1.0 | 78        |
| 7  | Azole susceptibility of <i>Malassezia pachydermatis</i> and <i>Malassezia furfur</i> and tentative epidemiological cut-off values. Medical Mycology, 2015, 53, 743-748.                                               | 0.3 | 74        |
| 8  | Assessment of the antifungal susceptibility of Malassezia pachydermatis in various media using a CLSI protocol. Veterinary Microbiology, 2012, 159, 536-540.                                                          | 0.8 | 67        |
| 9  | Bloodstream infections by Malassezia and Candida species in critical care patients. Medical Mycology, 2014, 52, 264-269.                                                                                              | 0.3 | 67        |
| 10 | Biological Characterization of White Line-Inducing Principle (WLIP) Produced by Pseudomonas reactans NCPPB1311. Molecular Plant-Microbe Interactions, 2006, 19, 1113-1120.                                            | 1.4 | 66        |
| 11 | Fungal diseases of horses. Veterinary Microbiology, 2013, 167, 215-234.                                                                                                                                               | 0.8 | 66        |
| 12 | Frequency, Body Distribution, and Population Size of <i>Malassezia</i> Species in Healthy Dogs and in<br>Dogs with Localized Cutaneous Lesions. Journal of Veterinary Diagnostic Investigation, 2005, 17,<br>316-322. | 0.5 | 65        |
| 13 | <i>In vitro</i> evaluation of <i>Malassezia pachydermatis</i> susceptibility to azole compounds using<br>E-test and CLSI microdilution methods. Medical Mycology, 2012, 50, 795-801.                                  | 0.3 | 65        |
| 14 | In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin<br>lesions. Veterinary Microbiology, 2012, 155, 395-398.                                                               | 0.8 | 60        |
| 15 | ABC transporters are involved in defense against permethrin insecticide in the malaria vector<br>Anopheles stephensi. Parasites and Vectors, 2014, 7, 349.                                                            | 1.0 | 58        |
| 16 | Antifungal susceptibility of <i>Malassezia pachydermatis</i> biofilm. Medical Mycology, 2013, 51, 863-867.                                                                                                            | 0.3 | 54        |
| 17 | Advances in the identification of Malassezia. Molecular and Cellular Probes, 2011, 25, 1-7.                                                                                                                           | 0.9 | 50        |
| 18 | Malassezia spp. Yeasts of Emerging Concern in Fungemia. Frontiers in Cellular and Infection<br>Microbiology, 2020, 10, 370.                                                                                           | 1.8 | 49        |

CLAUDIA CAFARCHIA

| #  | Article                                                                                                                                                                                                     | IF                | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 19 | Genetic variants of Malassezia pachydermatis from canine skin: body distribution and phospholipase<br>activity. FEMS Yeast Research, 2008, 8, 451-459.                                                      | 1.1               | 47             |
| 20 | Gastrointestinal Parasites in Mammals of Two Italian Zoological Gardens. Journal of Zoo and Wildlife<br>Medicine, 2010, 41, 662-670.                                                                        | 0.3               | 46             |
| 21 | An improved molecular diagnostic assay for canine and feline dermatophytosis. Medical Mycology, 2013, 51, 136-143.                                                                                          | 0.3               | 39             |
| 22 | In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. Journal of<br>Medical Microbiology, 2014, 63, 1467-1473.                                                               | 0.7               | 39             |
| 23 | Molecular identification and phylogenesis of dermatophytes isolated from rabbit farms and rabbit<br>farm workers. Veterinary Microbiology, 2012, 154, 395-402.                                              | 0.8               | 37             |
| 24 | The role of drug efflux pumps in <i>Malassezia pachydermatis</i> and <i>Malassezia furfur</i> defence against azoles. Mycoses, 2017, 60, 178-182.                                                           | 1.8               | 36             |
| 25 | Biofilm formation of Malassezia pachydermatis from dogs. Veterinary Microbiology, 2012, 160, 126-131.                                                                                                       | 0.8               | 34             |
| 26 | Molecular characterization of Malassezia isolates from dogs using three distinct genetic markers in nuclear DNA. Molecular and Cellular Probes, 2007, 21, 229-238.                                          | 0.9               | 33             |
| 27 | Chemical Composition, Antibacterial and Antifungal Activities of Crude Dittrichia viscosa (L.) Greuter<br>Leaf Extracts. Molecules, 2017, 22, 942.                                                          | 1.7               | 32             |
| 28 | Therapy and Antifungal Susceptibility Profile of Microsporum canis. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /0                                                                                          | Overlock 1<br>1.5 | 0 Tf 50 382 To |
| 29 | Laboratory evaluation of a native strain of Beauveria bassiana for controlling Dermanyssus gallinae<br>(De Geer, 1778) (Acari: Dermanyssidae). Veterinary Parasitology, 2015, 212, 478-482.                 | 0.7               | 30             |
| 30 | Lymphocutaneous and nasal sporotrichosis in a dog from Southern Italy: Case Report.<br>Mycopathologia, 2007, 163, 75-79.                                                                                    | 1.3               | 28             |
| 31 | Genetic variability and phospholipase production of <i>Malassezia pachydermatis</i> isolated from dogs with diverse grades of skin lesions. Medical Mycology, 2010, 48, 889-892.                            | 0.3               | 27             |
| 32 | Native strains of Beauveria bassiana for the control of Rhipicephalus sanguineus sensu lato. Parasites and Vectors, 2015, 8, 80.                                                                            | 1.0               | 25             |
| 33 | Molecular characterization of selected dermatophytes and their identification by electrophoretic mutation scanning. Electrophoresis, 2009, 30, 3555-3564.                                                   | 1.3               | 24             |
| 34 | Environmental contamination by Aspergillus spp. in laying hen farms and associated health risks for<br>farm workers. Journal of Medical Microbiology, 2014, 63, 464-470.                                    | 0.7               | 24             |
| 35 | Enzymatic activity of <i>Microsporum canis</i> and <i>Trichophyton mentagrophytes</i> from breeding rabbits with and without skin lesions. Mycoses, 2012, 55, 45-49.                                        | 1.8               | 23             |
| 36 | Species Distribution and <i>In Vitro</i> Azole Susceptibility of Aspergillus Section <i>Nigri</i> Isolates from Clinical and Environmental Settings. Journal of Clinical Microbiology, 2016, 54, 2365-2372. | 1.8               | 23             |

CLAUDIA CAFARCHIA

| #  | Article                                                                                                                                                                                                         | IF               | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 37 | Yeasts isolated from cloacal swabs, feces, and eggs of laying hens. Medical Mycology, 2019, 57, 340-345.                                                                                                        | 0.3              | 22             |
| 38 | Molecular identity and prevalence of Cryptococcus spp. nasal carriage in asymptomatic feral cats in<br>Italy. Medical Mycology, 2014, 52, 667-673.                                                              | 0.3              | 20             |
| 39 | In vitro activity of two amphotericin B formulations against Malassezia furfur strains recovered from patients with bloodstream infections. Medical Mycology, 2015, 53, 269-274.                                | 0.3              | 19             |
| 40 | Dittrichia viscosa L. leaves lipid extract: An unexploited source of essential fatty acids and tocopherols with antifungal and anti-inflammatory properties. Industrial Crops and Products, 2018, 113, 196-201. | 2.5              | 19             |
| 41 | Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: Strength and weakness. Medical Mycology, 2018, 56, 828-833.                                                                 | 0.3              | 19             |
| 42 | Multilocus mutation scanning for the analysis of genetic variation withinMalassezia (Basidiomycota:) Tj ETQqO C                                                                                                 | ) 0 rgBT /C      | )verlock 10 Tf |
| 43 | Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): Towards<br>new natural acaricides. Veterinary Parasitology, 2016, 229, 159-165.                                      | 0.7              | 18             |
| 44 | <i>Fusarium spp</i> . in Loggerhead Sea Turtles ( <i>Caretta caretta</i> ): From Colonization to<br>Infection. Veterinary Pathology, 2020, 57, 139-146.                                                         | 0.8              | 17             |
| 45 | In vitro Acaricidal Activity of Four Monoterpenes and Solvents Against Otodectes Cynotis (Acari:) Tj ETQq1 1 0.7                                                                                                | 784314 rg<br>0.7 | BT /Qverlock   |
| 46 | Conventional therapy and new antifungal drugs against <i>Malassezia</i> infections. Medical<br>Mycology, 2021, 59, 215-234.                                                                                     | 0.3              | 16             |
| 47 | Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans<br>and Animals. Journal of Fungi (Basel, Switzerland), 2022, 8, 708.                                         | 1.5              | 15             |
| 48 | Geotrichum candidum as etiological agent of horse dermatomycosis. Veterinary Microbiology, 2011, 148, 368-371.                                                                                                  | 0.8              | 14             |
| 49 | In vitro and in vivo activity of a killer peptide against Malassezia pachydermatis causing otitis in dogs.<br>Medical Mycology, 2014, 52, 350-355.                                                              | 0.3              | 14             |
| 50 | Assessing the relationship between Malassezia and leishmaniasis in dogs with or without skin lesions.<br>Acta Tropica, 2008, 107, 25-29.                                                                        | 0.9              | 13             |
| 51 | Efficacy of Amitraz plus Metaflumizone for the treatment of canine demodicosis associated with<br>Malassezia pachydermatis. Parasites and Vectors, 2009, 2, 13.                                                 | 1.0              | 13             |
| 52 | <i>Cryptococcus neoformans</i> in the respiratory tract of squirrels, <i>Callosciurus<br/>finlaysonii</i> (Rodentia, Sciuridae). Medical Mycology, 2015, 53, 666-673.                                           | 0.3              | 13             |
| 53 | Synergistic Effects of Efflux Pump Modulators on the Azole Antifungal Susceptibility of Microsporum canis. Mycopathologia, 2020, 185, 279-288.                                                                  | 1.3              | 13             |
| 54 | Antifungal, Antioxidant and Antibiofilm Activities of Essential Oils of Cymbopogon spp Antibiotics, 2022, 11, 829.                                                                                              | 1.5              | 12             |

CLAUDIA CAFARCHIA

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chemical characterization and acaricidal activity of Drimia maritima (L) bulbs and Dittrichia viscosa<br>leaves against Dermanyssus gallinae. Veterinary Parasitology, 2019, 268, 61-66.                                                                                   | 0.7 | 11        |
| 56 | Transcriptome of larvae representing the Rhipicephalus sanguineus complex. Molecular and Cellular Probes, 2017, 31, 85-90.                                                                                                                                                 | 0.9 | 10        |
| 57 | A Case of Equine Aspergillosis: A Novel Sampling Procedure for Diagnosis. Journal of Equine<br>Veterinary Science, 2012, 32, 634-637.                                                                                                                                      | 0.4 | 9         |
| 58 | The best type of inoculum for testing the antifungal drug susceptibility of <i>Microsporum canis</i> :<br>In vivo and in vitro results. Mycoses, 2020, 63, 711-716.                                                                                                        | 1.8 | 9         |
| 59 | Freeze-drying of Beauveria bassiana suspended in Hydroxyethyl cellulose based hydrogel as possible<br>method for storage: Evaluation of survival, growth and stability of conidial concentration before<br>and after processing. Results in Engineering, 2021, 12, 100283. | 2.2 | 9         |
| 60 | Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans.<br>Antibiotics, 2021, 10, 296.                                                                                                                                               | 1.5 | 8         |
| 61 | Effect of chlorogenic and gallic acids combined with azoles on antifungal susceptibility and<br>virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates. Medical Mycology, 2020,<br>58, 1091-1101.                                                    | 0.3 | 7         |
| 62 | Comparative evaluation of E-test and CLSI methods for Itraconazole, Fluconazole and Ketoconazole susceptibilities of Microsporum canis strains. Mycopathologia, 2020, 185, 495-502.                                                                                        | 1.3 | 7         |
| 63 | Wild Boar (Sus scrofa) as Reservoir of Zoonotic Yeasts: Bioindicator of Environmental Quality.<br>Mycopathologia, 2022, 187, 235-248.                                                                                                                                      | 1.3 | 7         |
| 64 | From tissue engineering to mosquitoes: biopolymers as tools for developing a novel biomimetic approach to pest management/vector control. Parasites and Vectors, 2022, 15, 79.                                                                                             | 1.0 | 7         |
| 65 | Molecular identification of Phortica variegata and Phortica semivirgo (Drosophilidae, Steganinae) by<br>PCR-RFLP of the mitochondrial cytochrome oxidase c subunit I gene. Parasitology Research, 2008, 103,<br>727-730.                                                   | 0.6 | 6         |
| 66 | Virulence and in vitro antifungal susceptibility of Candida albicans and Candida catenulata from<br>laying hens. International Microbiology, 2021, 24, 57-63.                                                                                                              | 1.1 | 6         |
| 67 | MALDI-TOF MS for the identification of veterinary non-C. neoformans-C. gattii Cryptococcus spp.<br>isolates from Italy. Medical Mycology, 2014, 52, 659-666.                                                                                                               | 0.3 | 4         |
| 68 | In Vitro Azole and Amphotericin B Susceptibilities of Malassezia furfur from Bloodstream Infections<br>Using E-Test and CLSI Broth Microdilution Methods. Antibiotics, 2020, 9, 361.                                                                                       | 1.5 | 4         |
| 69 | Subtyping Options for Microsporum canis Using Microsatellites and MLST: A Case Study from Southern Italy. Pathogens, 2022, 11, 4.                                                                                                                                          | 1.2 | 4         |
| 70 | Real-time PCR assay for screening <i>Pneumocystis</i> in free-living wild squirrels and river rats in<br>Italy. Journal of Veterinary Diagnostic Investigation, 2018, 30, 862-867.                                                                                         | 0.5 | 3         |
| 71 | Rare Generalized Form of Fungal Dermatitis in a Horse: Case Report. Animals, 2020, 10, 871.                                                                                                                                                                                | 1.0 | 3         |
| 72 | <i>Beauveria bassiana</i> (Hypocreales: Cordycipitaceae) Reduces the Survival Time of <i>Lutzomyia<br/>longipalpis</i> (Diptera: Psychodidae), the Main Vector of the Visceral Leishmaniasis Agent in the<br>Americas. Journal of Medical Entomology, 2020, 57, 2025-2029. | 0.9 | 3         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Deverra triradiata Hochst. ex Boiss. from the Northern Region of Saudi Arabia: Essential Oil Profiling,<br>Plant Extracts and Biological Activities. Plants, 2022, 11, 1543.                                                                   | 1.6 | 3         |
| 74 | Storage of Beauveria bassiana Conidia Suspension: A Study Exploring the Potential Effects on Conidial<br>iability and Virulence against Dermanyssus gallinae De Geer, 1778 Acari: Dermanyssidae. Annals of<br>Biological Sciences, 2017, 05, . | 0.2 | 2         |
| 75 | Proof of Concept of Biopolymer Based Hydrogels as Biomimetic Oviposition Substrate to Develop<br>Tiger Mosquitoes (Aedes albopictus) Cost-Effective Lure and Kill Ovitraps. Bioengineering, 2022, 9, 267.                                      | 1.6 | 2         |
| 76 | Role of lizards as reservoirs of pathogenic yeasts of zoonotic concern. Acta Tropica, 2022, 231, 106472.                                                                                                                                       | 0.9 | 0         |