George R Uhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092092/publications.pdf Version: 2024-02-01

GEORGE R LIHI

#	Article	IF	CITATIONS
1	Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Biochemical Pharmacology, 2022, 195, 114868.	2.0	2
2	Substrate-selective positive allosteric modulation of PTPRD's phosphatase by flavonols. Biochemical Pharmacology, 2022, 202, 115109.	2.0	1
3	Metoprine, a histamine N-methyltransferase inhibitor, attenuates methamphetamine-induced hyperlocomotion via activation of histaminergic neurotransmission in mice. Pharmacology Biochemistry and Behavior, 2021, 209, 173257.	1.3	3
4	In vivo evaluation of effects of histamine H3 receptor antagonists on methamphetamine-induced hyperlocomotion in mice. Brain Research, 2020, 1740, 146873.	1.1	5
5	Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neuroscience Letters, 2020, 738, 135378.	1.0	7
6	Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Annals of Clinical and Translational Neurology, 2019, 6, 406-415.	1.7	6
7	PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Annals of the New York Academy of Sciences, 2019, 1451, 112-129.	1.8	55
8	The neurobiology of addiction. Annals of the New York Academy of Sciences, 2019, 1451, 5-28.	1.8	107
9	Evaluating the genetic susceptibility to peer reported bullying behaviors. Psychiatry Research, 2018, 263, 193-198.	1.7	8
10	Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11597-11602.	3.3	33
11	Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation. Sleep Medicine, 2017, 31, 71-77.	0.8	46
12	Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice. Molecular Medicine, 2016, 22, 537-547.	1.9	26
13	Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addictionâ€associated genes. Annals of the New York Academy of Sciences, 2015, 1349, 83-95.	1.8	33
14	Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models. PLoS ONE, 2015, 10, e0120908.	1.1	5
15	Mouse Model for Protein Tyrosine Phosphatase D (PTPRD) Associations with Restless Leg Syndrome or Willis-Ekbom Disease and Addiction: Reduced Expression Alters Locomotion, Sleep Behaviors and Cocaine-Conditioned Place Preference. Molecular Medicine, 2015, 21, 717-725.	1.9	45
16	Sex differences in the effects of adolescent social deprivation on alcohol consumption in μ-opioid receptor knockout mice. Psychopharmacology, 2015, 232, 1471-1482.	1.5	11
17	Cell Adhesion Molecules: Druggable Targets for Modulating the Connectome and Brain Disorders?. Neuropsychopharmacology, 2014, 39, 235-235.	2.8	13
18	"Replicated―genome wide association for dependence on illegal substances: Genomic regions identified by overlapping clusters of nominally positive SNPs. , 2011, 156, 125-138.		37

George R Uhl

#	Article	IF	CITATIONS
19	Molecular Genetics of Successful Smoking Cessation. Archives of General Psychiatry, 2008, 65, 683.	13.8	227
20	Genome-Wide Association for Methamphetamine Dependence. Archives of General Psychiatry, 2008, 65, 345.	13.8	130
21	Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genetics, 2007, 8, 10.	2.7	138
22	Common Human 5′ Dopamine Transporter (SLC6A3) Haplotypes Yield Varying Expression Levels In Vivo. Cellular and Molecular Neurobiology, 2006, 26, 873-887.	1.7	45
23	Addiction molecular genetics: 639,401 SNP whole genome association identifies many "cell adhesionâ€ genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 918-925.	€Â• 1.1	149
24	NrCAM in Addiction Vulnerability: Positional Cloning, Drug-Regulation, Haplotype-Specific Expression, and Altered Drug Reward in Knockout Mice. Neuropsychopharmacology, 2006, 31, 572-584.	2.8	84
25	Pooled association genome scanning: Validation and use to identify addiction vulnerability loci in two samples. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11864-11869.	3.3	91
26	The Burden of Complex Genetics in Brain Disorders. Archives of General Psychiatry, 2004, 61, 223.	13.8	152
27	Molecular Mechanisms Underlying the Rewarding Effects of Cocaine. Annals of the New York Academy of Sciences, 2004, 1025, 47-56.	1.8	97
28	Dopamine transporter: Basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Movement Disorders, 2003, 18, S71-S80.	2.2	93

GEORGE R UHL

#	Article	IF	CITATIONS
37	High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. American Journal of Medical Genetics Part A, 1997, 74, 439-442.	2.4	175
38	Phorbol Esters Increase Dopamine Transporter Phosphorylation and Decrease Transport <i>V</i> _{max} . Journal of Neurochemistry, 1997, 68, 225-232.	2.1	157
39	Ultrastructural immunocytochemical localization of ? opioid receptors and Leu5-enkephalin in the patch compartment of the rat caudate-putamen nucleus. , 1996, 375, 659-674.		68
40	Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders. American Journal of Medical Genetics Part A, 1995, 60, 563-565.	2.4	10
41	Dopamine transporter immunoreactivity in rat brain. Journal of Comparative Neurology, 1995, 359, 340-349.	0.9	193
42	Brain transcription factor gene expression, neurotransmitter levels, and novelty response behaviors: Alterations during rat amphetamine withdrawal and following chronic injection stress. Synapse, 1995, 19, 212-227.	0.6	56
43	Dopamine Transporter Cysteine Mutants: Second Extracellular Loop Cysteines Are Required for Transporter Expression. Journal of Neurochemistry, 1995, 64, 1416-1419.	2.1	61
44	Dopamine transporter messenger RNA in Parkinson's disease and control substantia nigra neurons. Annals of Neurology, 1994, 35, 494-498.	2.8	147
45	Proenkephalin transgenic mice: A short promoter confers high testis expression and reduced fertility. Molecular Reproduction and Development, 1994, 38, 275-284.	1.0	22
46	cDNA Cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Letters, 1994, 348, 75-79.	1.3	352
47	Human μ opiate receptor. FEBS Letters, 1994, 338, 217-222.	1.3	255
48	Murine serotonin transporter: sequence and localization to Chromosome 11. Mammalian Genome, 1993, 4, 283-284.	1.0	26
49	Dopamine transporter mutants selectively enhance MPP+ transport. Synapse, 1993, 15, 58-62.	0.6	104
50	A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifiesTaql RFLPs. FEBS Letters, 1993, 318, 325-330.	1.3	74
51	Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Molecular Brain Research, 1993, 18, 181-186.	2.5	121
52	Species Differences in Dopamine Transporters: Postmortem Changes and Glycosylation Differences. Journal of Neurochemistry, 1993, 61, 496-500.	2.1	43
53	A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Molecular Brain Research, 1992, 15, 161-166.	2.5	187
54	Elucidating Neurotensin Receptor cDNAs and Their Distribution. Annals of the New York Academy of Sciences, 1992, 668, 101-108.	1.8	3

GEORGE R UHL

#	Article	IF	CITATIONS
55	Preproenkephalin upregulation in nucleus caudalis: High and low intensity afferent stimulation differentially modulate early and late responses. Journal of Comparative Neurology, 1990, 302, 1002-1018.	0.9	18
56	Localization and regulation of vasopressin mRNA in human neurons. Synapse, 1989, 3, 246-254.	0.6	27
57	Opioid peptide gene expression in rat trigeminal nucleus caudalis neurons: Normal distribution and effects of trigeminal deafferentation. Journal of Comparative Neurology, 1988, 274, 142-150.	0.9	29
58	Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature, 1984, 309, 350-352.	13.7	98
59	Acetylcholinesterase-immunoreactive axonal network in monkey visual cortex. Journal of Comparative Neurology, 1984, 226, 246-254.	0.9	44