Joseph Barbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5092015/publications.pdf

Version: 2024-02-01

39	5,042	25 h-index	37
papers	citations		g-index
39	39	39	9741
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of patient characteristics associated with survival benefit from metformin treatment in patients with stage I non–small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1318-1326.e3.	0.4	1
2	Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment. Cancer Immunology Research, 2021, 9, 651-664.	1.6	43
3	Visceral Obesity Promotes Lung Cancer Progressionâ€"Toward Resolution of the Obesity Paradox in Lung Cancer. Journal of Thoracic Oncology, 2021, 16, 1333-1348.	0.5	27
4	Obesity-Specific Association of Statin Use and Reduced Risk of Recurrence of Early Stage NSCLC. JTO Clinical and Research Reports, 2021, 2, 100254.	0.6	3
5	The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Reports, 2020, 21, e50308.	2.0	41
6	<scp>TRAF</scp> 6 directs <scp>FOXP</scp> 3 localization and facilitates regulatory Tâ€cell function through K63â€linked ubiquitination. EMBO Journal, 2019, 38, .	3.5	62
7	Body Mass Index Influences the Salutary Effects ofÂMetformin on Survival After Lobectomy for Stage I NSCLC. Journal of Thoracic Oncology, 2019, 14, 2181-2187.	0.5	23
8	Augmentation of IFN- \hat{l}^3 + CD8+ T cell responses correlates with survival of HCC patients on sorafenib therapy. JCI Insight, 2019, 4, .	2.3	52
9	The E3 Ligase TRAF6 directs FOXP3 localization and facilitates Treg function through K63â€type ubiquitination. FASEB Journal, 2019, 33, 792.1.	0.2	O
10	YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 2018, 8, 1026-1043.	7.7	152
11	The Hypoxic Tumor Microenvironment and the Anti-cancer Immune Response. , 2017, , 249-292.		O
12	Metabolic Regulation of T Cell Immunity. Advances in Experimental Medicine and Biology, 2017, 1011, 87-130.	0.8	5
13	The regulation of immune tolerance by FOXP3. Nature Reviews Immunology, 2017, 17, 703-717.	10.6	398
14	MicroRNA-17 Modulates Regulatory T Cell Function by Targeting Co-regulators of the Foxp3 Transcription Factor. Immunity, 2016, 45, 83-93.	6.6	85
15	Ubiquitinâ€dependent regulation of Foxp3 and Treg function. Immunological Reviews, 2015, 266, 27-45.	2.8	37
16	Hypoxia-inducible factors in T lymphocyte differentiation and function. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C580-C589.	2.1	69
17	<i>Pentalinon andrieuxii</i> Root Extract is Effective in the Topical Treatment of Cutaneous Leishmaniasis Caused by <i>Leishmania mexicana</i> Phytotherapy Research, 2014, 28, 909-916.	2.8	24
18	Ubiquitous points of control over regulatory T cells. Journal of Molecular Medicine, 2014, 92, 555-569.	1.7	6

#	Article	IF	CITATIONS
19	Treg functional stability and its responsiveness to the microenvironment. Immunological Reviews, 2014, 259, 115-139.	2.8	189
20	The Ubiquitin Ligase Stub1 Negatively Modulates Regulatory T Cell Suppressive Activity by Promoting Degradation of the Transcription Factor Foxp3. Immunity, 2013, 39, 272-285.	6.6	260
21	Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity, 2013, 39, 259-271.	6.6	248
22	Metabolic control of the Treg/Th17 axis. Immunological Reviews, 2013, 252, 52-77.	2.8	179
23	Hypoxia-inducible factor 1. Oncolmmunology, 2012, 1, 510-515.	2.1	20
24	Critical role for phosphoinositide 3-kinase gamma in parasite invasion and disease progression of cutaneous leishmaniasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1251-1256.	3.3	42
25	Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 2012, 15, 110-121.	7.2	923
26	Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1. Cell, 2011, 146, 772-784.	13.5	1,304
27	Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection. Cellular Microbiology, 2011, 13, 913-923.	1.1	40
28	Signal transducer and activator of transcription 1 in T cells plays an indispensable role in immunity to <i>Leishmania major $\langle i \rangle$ by mediating Th1 cell homing to the site of infection. FASEB Journal, 2009, 23, 3990-3999.</i>	0.2	13
29	Eos Mediates Foxp3-Dependent Gene Silencing in CD4 ⁺ Regulatory T Cells. Science, 2009, 325, 1142-1146.	6.0	295
30	Role of phosphatidylinositolâ€3â€kinaseâ€Î³ (PI3Kγ)â€mediated pathway in 17βâ€estradiolâ€induced killing of L mexicana in macrophages from C57BL/6 mice. Immunology and Cell Biology, 2008, 86, 539-543.	· 1.0	22
31	T Cells from <i>Leishmania major</i> -Susceptible BALB/c Mice Have a Defect in Efficiently Up-Regulating CXCR3 upon Activation. Journal of Immunology, 2008, 181, 4613-4620.	0.4	22
32	Macrophage migration inhibitory factor (MIF) is critical for the host resistance against <i>Toxoplasma gondii</i> . FASEB Journal, 2008, 22, 3661-3671.	0.2	67
33	PI3Kgamma (PI3K \hat{I}^3) is essential for efficient induction of CXCR3 on activated T cells. Blood, 2008, 112, 3048-3051.	0.6	26
34	Lack of CXCR3 Delays the Development of Hepatic Inflammation but Does Not Impair Resistance toLeishmania donovani. Journal of Infectious Diseases, 2007, 195, 1713-1717.	1.9	25
35	IFN- \hat{I}^3 and STAT1 are required for efficient induction of CXC chemokine receptor 3 (CXCR3) on CD4+ but not CD8+ T cells. Blood, 2007, 110, 2215-2216.	0.6	31
36	Interleukin-27R (WSX-1/T-Cell Cytokine Receptor) Gene-Deficient Mice Display Enhanced Resistance to Leishmania donovani Infection but Develop Severe Liver Immunopathology. American Journal of Pathology, 2006, 168, 158-169.	1.9	126

#	Article	IF	CITATIONS
37	Cutting Edge: STAT1 and T-bet Play Distinct Roles in Determining Outcome of Visceral Leishmaniasis Caused by <i>Leishmania donovani</i>	0.4	56
38	CXCR3-/- mice mount an efficient Th1 response but fail to controlLeishmania major infection. European Journal of Immunology, 2005, 35, 515-523.	1.6	58
39	Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. International Immunology, 2005, 17, 1347-1357.	1.8	68