Kathleen Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5091587/publications.pdf Version: 2024-02-01

KATHIEEN KELLY

#	Article	IF	CITATIONS
1	TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Therapy, 2022, 29, 1463-1476.	4.6	2
2	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	12.8	70
3	Profiling prostate biology. Science, 2020, 368, 467-468.	12.6	0
4	Targeting the PI3K/AKT Pathway Overcomes Enzalutamide Resistance by Inhibiting Induction of the Glucocorticoid Receptor. Molecular Cancer Therapeutics, 2020, 19, 1436-1447.	4.1	31
5	The Indenoisoquinoline TOP1 Inhibitors Selectively Target Homologous Recombination-Deficient and Schlafen 11-Positive Cancer Cells and Synergize with Olaparib. Clinical Cancer Research, 2019, 25, 6206-6216.	7.0	34
6	EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 2019, 38, 6241-6255.	5.9	93
7	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
8	CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. Cell Reports, 2019, 29, 2355-2370.e6.	6.4	45
9	Platelets Promote Metastasis via Binding Tumor CD97 Leading to Bidirectional Signaling that Coordinates Transendothelial Migration. Cell Reports, 2018, 23, 808-822.	6.4	111
10	Gambogic Acid Induces Cell Apoptosis and Inhibits MAPK Pathway in PTENâ^'/â^'/p53â^'/â^' Prostate Cancer Cells In Vitro and Ex Vivo. Chinese Journal of Integrative Medicine, 2018, 24, 109-116.	1.6	18
11	High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Scientific Reports, 2018, 8, 17239.	3.3	29
12	A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clinical Cancer Research, 2018, 24, 4332-4345.	7.0	154
13	Reprogramming to resist. Science, 2017, 355, 29-30.	12.6	15
14	Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget, 2017, 8, 77181-77194.	1.8	25
15	Loss of Androgen-Regulated MicroRNA 1 Activates SRC and Promotes Prostate Cancer Bone Metastasis. Molecular and Cellular Biology, 2015, 35, 1940-1951.	2.3	49
16	Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors. Cell Reports, 2015, 13, 2147-2158.	6.4	74
17	AR-Regulated TWEAK-FN14 Pathway Promotes Prostate Cancer Bone Metastasis. Cancer Research, 2014, 74, 4306-4317.	0.9	37
18	Critical and Reciprocal Regulation of KLF4 and SLUG in Transforming Growth Factor β-Initiated Prostate Cancer Epithelial-Mesenchymal Transition. Molecular and Cellular Biology, 2012, 32, 941-953.	2.3	141

KATHLEEN KELLY

#	Article	IF	CITATIONS
19	TMPRSS2- Driven ERG Expression In Vivo Increases Self-Renewal and Maintains Expression in a Castration Resistant Subpopulation. PLoS ONE, 2012, 7, e41668.	2.5	48
20	Prostate Epithelial Pten/TP53 Loss Leads to Transformation of Multipotential Progenitors and Epithelial to Mesenchymal Transition. American Journal of Pathology, 2011, 179, 422-435.	3.8	85
21	LPA Receptor Heterodimerizes with CD97 to Amplify LPA-Initiated RHO-Dependent Signaling and Invasion in Prostate Cancer Cells. Cancer Research, 2011, 71, 7301-7311.	0.9	144
22	Self-Renewing Pten-/-TP53-/- Protospheres Produce Metastatic Adenocarcinoma Cell Lines with Multipotent Progenitor Activity. PLoS ONE, 2011, 6, e26112.	2.5	36
23	Characterizing the Contribution of Stem/Progenitor Cells to Tumorigenesis in the <i>Pten</i> â^'/â^' <i>TP53</i> â^'/â^' Prostate Cancer Model. Stem Cells, 2010, 28, 2129-2140.	3.2	63
24	Cediranib/AZD2171 Inhibits Bone and Brain Metastasis in a Preclinical Model of Advanced Prostate Cancer. Cancer Research, 2010, 70, 8662-8673.	0.9	46
25	Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clinical and Experimental Metastasis, 2009, 26, 403-414.	3.3	45
26	Prostate cancer and metastasis initiating stem cells. Cell Research, 2008, 18, 528-537.	12.0	54
27	Improved Antibacterial Host Defense and Altered Peripheral Granulocyte Homeostasis in Mice Lacking the Adhesion Class G Protein Receptor CD97. Infection and Immunity, 2007, 75, 1144-1153.	2.2	35
28	Activation of the RalGEF/Ral Pathway Promotes Prostate Cancer Metastasis to Bone. Molecular and Cellular Biology, 2007, 27, 7538-7550.	2.3	101
29	CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood, 2005, 105, 2836-2844.	1.4	179
30	The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma. Oncogene, 2001, 20, 3217-3225.	5.9	42