Georges Lacaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5091141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood, 2022, 139, 343-356.	0.6	29
2	Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Frontiers in Cell and Developmental Biology, 2021, 9, 631699.	1.8	14
3	CUL2 ^{LRR1} , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Reports, 2021, 22, e52164.	2.0	25
4	Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2021, 14, 47.	6.9	7
5	Enhancer recruitment of transcription repressors RUNX1 and TLE3 by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Cell Reports, 2021, 36, 109725.	2.9	15
6	Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors. Nature Communications, 2021, 12, 7019.	5.8	8
7	The RUNX1b Isoform Defines Hemogenic Competency in Developing Human Endothelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 812639.	1.8	3
8	Decoding hematopoietic stem cells' birth. Blood, 2020, 136, 775-776.	0.6	0
9	Alternative Enhancer Usage and Targeted Polycomb Marking Hallmark Promoter Choice during T Cell Differentiation. Cell Reports, 2020, 32, 108048.	2.9	13
10	RUNX1 Dosage in Development and Cancer. Molecules and Cells, 2020, 43, 126-138.	1.0	16
11	RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. ELife, 2020, 9, .	2.8	34
12	Transcriptional control of blood cell emergence. FEBS Letters, 2019, 593, 3304-3315.	1.3	16
13	Identification of gene specific cis-regulatory elements during differentiation of mouse embryonic stem cells: An integrative approach using high-throughput datasets. PLoS Computational Biology, 2019, 15, e1007337.	1.5	18
14	Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nature Communications, 2019, 10, 447.	5.8	55
15	RUNX transcription factors: orchestrators of development. Development (Cambridge), 2019, 146, .	1.2	146
16	HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports, 2018, 10, 875-889.	2.3	20
17	HDAC1 and HDAC2 Modulate TGF-β Signaling during Endothelial-to-Hematopoietic Transition. Stem Cell Reports, 2018, 10, 1369-1383.	2.3	28
18	Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development (Cambridge), 2018, 145, .	1.2	38

#	Article	IF	CITATIONS
19	The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation. Cancer Cell, 2018, 34, 626-642.e8.	7.7	81
20	Early Human Hemogenic Endothelium Generates Primitive and Definitive Hematopoiesis InÂVitro. Stem Cell Reports, 2018, 11, 1061-1074.	2.3	38
21	Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nature Communications, 2018, 9, 2517.	5.8	99
22	A novel prospective isolation of murine fetal liver progenitors to study in utero hematopoietic defects. PLoS Genetics, 2018, 14, e1007127.	1.5	7
23	TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells. Cancer Cell, 2017, 31, 621-634.e6.	7.7	73
24	Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors. Blood, 2017, 130, 271-284.	0.6	19
25	Runx1 Structure and Function in Blood Cell Development. Advances in Experimental Medicine and Biology, 2017, 962, 65-81.	0.8	23
26	Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Experimental Hematology, 2017, 49, 19-24.	0.2	97
27	Primitive erythrocytes are generated from hemogenic endothelial cells. Scientific Reports, 2017, 7, 6401.	1.6	28
28	SOXF transcription factors in cardiovascular development. Seminars in Cell and Developmental Biology, 2017, 63, 50-57.	2.3	44
29	SOX7 promotes the maintenance and proliferation of B cell precursor acute lymphoblastic cells. Oncotarget, 2017, 8, 64974-64983.	0.8	5
30	SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development. Mechanisms of Development, 2017, 146, 31-41.	1.7	24
31	New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle, 2016, 15, 2108-2114.	1.3	18
32	Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development (Cambridge), 2016, 143, 4324-4340.	1.2	43
33	The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development. Cell Reports, 2016, 15, 2185-2199.	2.9	40
34	SOX7-enforced expression promotes the expansion of adult blood progenitors and blocks B-cell development. Open Biology, 2016, 6, 160070.	1.5	7
35	Concise Review: Recent Advances in the In Vitro Derivation of Blood Cell Populations. Stem Cells Translational Medicine, 2016, 5, 1330-1337.	1.6	19
36	Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac. Development (Cambridge), 2016, 143, 4341-4351.	1.2	30

#	Article	IF	CITATIONS
37	Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Scientific Reports, 2016, 6, 25917.	1.6	59
38	Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Experimental Hematology, 2016, 44, 231-237.e4.	0.2	12
39	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	1.7	67
40	Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Developmental Cell, 2016, 36, 572-587.	3.1	213
41	GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nature Cell Biology, 2016, 18, 21-32.	4.6	172
42	RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis. PLoS Genetics, 2016, 12, e1005814.	1.5	28
43	Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nature Communications, 2015, 6, 7203.	5.8	24
44	Endoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis. Biology Open, 2015, 4, 819-829.	0.6	4
45	InÂVivo Repopulating Activity Emerges at the Onset of Hematopoietic Specification during Embryonic Stem Cell Differentiation. Stem Cell Reports, 2015, 4, 431-444.	2.3	47
46	FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development (Cambridge), 2015, 142, 3307-20.	1.2	10
47	Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood. Oncotarget, 2015, 6, 10924-10939.	0.8	7
48	MOZ-Mediated Repression of <i>p16INK4a</i> Is Critical for the Self-Renewal of Neural and Hematopoietic Stem Cells. Stem Cells, 2014, 32, 1591-1601.	1.4	55
49	Embryonic Stem Cell Differentiation $\hat{a} \in$ A Model System to Study Embryonic Haematopoiesis. , 2014, , .		Ο
50	Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells. Cell Reports, 2014, 9, 1871-1884.	2.9	148
51	RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence. Blood, 2014, 124, e11-e20.	0.6	61
52	Smooth muscle cells largely develop independently of functional hemogenic endothelium. Stem Cell Research, 2014, 12, 222-232.	0.3	11
53	Epigenetic and Transcriptional Mechanisms Regulating the Development of the Haematopoietic System in Mammals. Epigenetics and Human Health, 2014, , 67-93.	0.2	0
54	The <scp>MYST</scp> erious <scp>MOZ</scp> , a histone acetyltransferase with a key role in haematopoiesis. Immunology, 2013, 139, 161-165.	2.0	42

#	Article	IF	CITATIONS
55	RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO Journal, 2012, 31, 4318-4333.	3.5	158
56	SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development (Cambridge), 2012, 139, 1587-1598.	1.2	70
57	GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood, 2012, 120, 314-322.	0.6	144
58	Origin of blood cells and HSC production in the embryo. Trends in Immunology, 2012, 33, 215-223.	2.9	76
59	The Flk1-Cre-Mediated Deletion of ETV2 Defines Its Narrow Temporal Requirement During Embryonic Hematopoietic Development. Stem Cells, 2012, 30, 1521-1531.	1.4	49
60	ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Developmental Dynamics, 2012, 241, 1454-1464.	0.8	40
61	Embryonic stem cell–derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression. Blood, 2011, 117, 83-87.	0.6	18
62	The transcription factor Mxd4 controls the proliferation of the first blood precursors atÂthe onset of hematopoietic development inÂvitro. Experimental Hematology, 2011, 39, 1090-1100.	0.2	13
63	Identification and characterization of a novel transcriptional target of RUNX1/AML1 at the onset of hematopoietic development. Blood, 2011, 118, 594-597.	0.6	10
64	Influencing Hematopoietic Differentiation of Mouse Embryonic Stem Cells using Soluble Heparin and Heparan Sulfate Saccharides. Journal of Biological Chemistry, 2011, 286, 6241-6252.	1.6	44
65	Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood, 2010, 115, 3895-3898.	0.6	29
66	Blood cell generation from the hemangioblast. Journal of Molecular Medicine, 2010, 88, 167-172.	1.7	63
67	The Sequential Expression of CD40 and Icam2 Defines Progressive Steps in the Formation of Blood Precursors from the Mesoderm Germ Layer. Stem Cells, 2010, 28, 1089-1098.	1.4	12
68	The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature, 2009, 457, 892-895.	13.7	561
69	Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood, 2009, 114, 299-309.	0.6	113
70	The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood, 2009, 113, 4866-4874.	0.6	87
71	Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors. Blood, 2009, 113, 5783-5792.	0.6	69
72	The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood, 2009, 114, 5279-5289.	0.6	108

#	Article	IF	CITATIONS
73	Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood, 2009, 114, 4813-4822.	0.6	59
74	In Vitro Differentiation of Embryonic Stem Cells as a Model of Early Hematopoietic Development. Methods in Molecular Biology, 2009, 538, 317-334.	0.4	46
75	A Developmentally Regulated Heparan Sulfate Epitope Defines a Subpopulation with Increased Blood Potential During Mesodermal Differentiation. Stem Cells, 2008, 26, 3108-3118.	1.4	43
76	Quantitative Proteomics Analysis Demonstrates Post-transcriptional Regulation of Embryonic Stem Cell Differentiation to Hematopoiesis. Molecular and Cellular Proteomics, 2008, 7, 459-472.	2.5	67
77	The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development (Cambridge), 2008, 135, 1525-1535.	1.2	145
78	Endoglin expression in blood and endothelium is differentially regulated by modular assembly of the Ets/Gata hemangioblast code. Blood, 2008, 112, 4512-4522.	0.6	42
79	Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17692-17697.	3.3	208
80	Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes and Development, 2007, 21, 2069-2082.	2.7	99
81	The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl–/– phenotype. Blood, 2007, 109, 1908-1916.	0.6	71
82	Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13170-13175.	3.3	164
83	Tracking Mesoderm Formation and Specification to the Hemangioblast in Vitro. Trends in Cardiovascular Medicine, 2004, 14, 314-317.	2.3	44
84	Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood, 2004, 103, 886-889.	0.6	65
85	Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development (Cambridge), 2003, 130, 4217-4227.	1.2	444
86	Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 2002, 100, 458-466.	0.6	266
87	Regulation of Hemangioblast Development. Annals of the New York Academy of Sciences, 2001, 938, 96-108.	1.8	72
88	T Cell-Independent Rescue of B Lymphocytes from Peripheral Immune Tolerance. Science, 2000, 287, 2501-2503.	6.0	69
89	B cell receptor expression level determines the fate of developing B lymphocytes: Receptor editing versus selection. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7435-7439.	3.3	70
90	Development of the hematopoietic system in the mouse. Experimental Hematology, 1999, 27, 777-787.	0.2	140

#	Article	lF	CITATIONS
91	Identification of a Fetal Hematopoietic Precursor with B Cell, T Cell, and Macrophage Potential. Immunity, 1998, 9, 827-838.	6.6	85
92	Antigens Varying in Affinity for the B Cell Receptor Induce Differential B Lymphocyte Responses. Journal of Experimental Medicine, 1998, 188, 1453-1464.	4.2	138
93	Leptin Stimulates Fetal and Adult Erythroid and Myeloid Development. Blood, 1997, 89, 1507-1512.	0.6	135
94	Isolation of recombinant partial gag gene product p18 (HIV-1Bru) from Escherichia coli. Journal of Chromatography A, 1989, 476, 99-112.	1.8	6