Pedro R Peres-Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5090928/publications.pdf

Version: 2024-02-01

76 papers 15,030 citations

41 h-index

70961

71532 76 g-index

77 all docs

77
docs citations

77 times ranked 18301 citing authors

#	Article	IF	CITATIONS
1	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	2.1	2,522
2	VARIATION PARTITIONING OF SPECIES DATA MATRICES: ESTIMATION AND COMPARISON OF FRACTIONS. Ecology, 2006, 87, 2614-2625.	1.5	1,875
3	Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 2006, 196, 483-493.	1.2	1,572
4	ANALYZING BETA DIVERSITY: PARTITIONING THE SPATIAL VARIATION OF COMMUNITY COMPOSITION DATA. Ecological Monographs, 2005, 75, 435-450.	2.4	1,014
5	How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, 2001, 129, 169-178.	0.9	801
6	What controls who is where in freshwater fish communities \hat{A} — the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 157-170.	0.7	751
7	How many principal components? stopping rules for determining the number of non-trivial axes revisited. Computational Statistics and Data Analysis, 2005, 49, 974-997.	0.7	626
8	SPATIAL MODELING IN ECOLOGY: THE FLEXIBILITY OF EIGENFUNCTION SPATIAL ANALYSES. Ecology, 2006, 87, 2603-2613.	1.5	523
9	Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 2012, 82, 257-275.	2.4	506
10	THE ROLE OF ENVIRONMENTAL AND SPATIAL PROCESSES IN STRUCTURING LAKE COMMUNITIES FROM BACTERIA TO FISH. Ecology, 2006, 87, 2985-2991.	1.5	446
11	Combining the fourthâ€corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 2014, 95, 14-21.	1.5	398
12	Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography, 2010, 19, 174-184.	2.7	370
13	GIVING MEANINGFUL INTERPRETATION TO ORDINATION AXES: ASSESSING LOADING SIGNIFICANCE IN PRINCIPAL COMPONENT ANALYSIS. Ecology, 2003, 84, 2347-2363.	1.5	297
14	What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 157-170.	0.7	186
15	Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters, 2010, 13, 1290-1299.	3.0	175
16	Predictive Models of Fish Species Distributions: A Note on Proper Validation and Chance Predictions. Transactions of the American Fisheries Society, 2002, 131, 329-336.	0.6	159
17	Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia, 2004, 140, 352-360.	0.9	151
18	Why phylogenies do not always predict ecological differences. Ecological Monographs, 2017, 87, 535-551.	2.4	148

#	Article	lF	Citations
19	Spatial isolation and fish communities in drainage lakes. Oecologia, 2001, 127, 572-585.	0.9	141
20	Environmentally constrained null models: site suitability as occupancy criterion. Oikos, 2001, 93, 110-120.	1.2	131
21	Linking trait variation to the environment: critical issues with communityâ€weighted mean correlation resolved by the fourthâ€corner approach. Ecography, 2017, 40, 806-816.	2.1	124
22	An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fMRI Data. NeuroImage, 2002, 17, 19-28.	2.1	116
23	Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go?. Landscape Ecology, 2010, 25, 495-507.	1.9	116
24	Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplainâ€fish communities. Ecography, 2014, 37, 464-475.	2.1	113
25	Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology, 2012, 93, S14.	1.5	105
26	The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia, 2004, 140, 36-45.	0.9	103
27	Ecology in the age of <scp>DNA</scp> barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources, 2014, 14, 221-232.	2.2	99
28	A NEW PHYLOGENETIC METHOD FOR IDENTIFYING EXCEPTIONAL PHENOTYPIC DIVERSIFICATION. Evolution; International Journal of Organic Evolution, 2012, 66, 135-146.	1.1	95
29	A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology, 2013, 94, 627-639.	1.5	95
30	Phylogenetic eigenvector maps: a framework to model and predict species traits. Methods in Ecology and Evolution, 2013, 4, 1120-1131.	2.2	91
31	<scp>MEMGENE</scp> : Spatial pattern detection in genetic distance data. Methods in Ecology and Evolution, 2014, 5, 1116-1120.	2.2	83
32	ANALYZING OR EXPLAINING BETA DIVERSITY? COMMENT. Ecology, 2008, 89, 3238-3244.	1.5	81
33	Assessing the robustness of randomization tests: examples from behavioural studies. Animal Behaviour, 2001, 61, 79-86.	0.8	64
34	Beyond neutrality: disentangling the effects of species sorting and spurious correlations in community analysis. Ecology, 2018, 99, 1737-1747.	1.5	62
35	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	6.0	62
36	Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography, 2015, 38, 198-212.	2.1	61

#	Article	IF	CITATIONS
37	Much beyond Mantel: Bringing Procrustes Association Metric to the Plant and Soil Ecologist's Toolbox. PLoS ONE, 2014, 9, e101238.	1.1	60
38	Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos, 2013, 122, 1700-1709.	1.2	58
39	Using null model analysis of species coâ€occurrences to deconstruct biodiversity patterns and select indicator species. Diversity and Distributions, 2009, 15, 958-971.	1.9	50
40	Measuring Protectedâ€Area Isolation and Correlations of Isolation with Landâ€Use Intensity and Protection Status. Conservation Biology, 2012, 26, 610-618.	2.4	48
41	Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agriculture, Ecosystems and Environment, 2010, 139, 500-507.	2.5	42
42	A critical issue in model-based inference for studying trait-based community assembly and a solution. Peerl, 2017, 5, e2885.	0.9	39
43	Habitatâ€based polymorphism is common in stream fishes. Journal of Animal Ecology, 2015, 84, 219-227.	1.3	38
44	Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology, 2016, 97, 2212-2222.	1.5	34
45	On the evolution of dispersal via heterogeneity in spatial connectivity. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142879.	1.2	30
46	Simple parametric tests for trait–environment association. Journal of Vegetation Science, 2018, 29, 801-811.	1.1	27
47	Assessing amongâ€lineage variability in phylogenetic imputation of functional trait datasets. Ecography, 2018, 41, 1740-1749.	2.1	26
48	Climate, history and lifeâ€history strategies interact in explaining differential macroecological patterns in freshwater zooplankton. Global Ecology and Biogeography, 2016, 25, 1454-1465.	2.7	22
49	Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades. Journal of Plankton Research, 2010, 32, 1369-1384.	0.8	21
50	Improving phylogenetic regression under complex evolutionary models. Ecology, 2016, 97, 286-293.	1.5	18
51	Spatial and species compositional networks for inferring connectivity patterns in ecological communities. Global Ecology and Biogeography, 2015, 24, 718-727.	2.7	17
52	The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology. Journal of Animal Ecology, 2015, 84, 934-942.	1.3	17
53	Act to staunch loss of research data. Nature, 2015, 520, 436-436.	13.7	16
54	Convergent polymorphism between stream and lake habitats: the case of brook char. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1406-1414.	0.7	15

#	Article	IF	CITATIONS
55	A quantitative framework to estimate the relative importance of environment, spatial variation and patch connectivity in driving community composition. Journal of Animal Ecology, 2017, 86, 316-326.	1.3	14
56	The interaction of phylogeny and community structure: Linking the community composition and trait evolutionÂof clades. Global Ecology and Biogeography, 2019, 28, 1499-1511.	2.7	14
57	Type 1 Error Rates of the Parsimony Permutation Tail Probability Test. Systematic Biology, 2002, 51, 524-527.	2.7	13
58	Morphological and swim performance variation among reproductive tactics of bluegill sunfish (<i>Lepomis macrochirus</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1802-1810.	0.7	13
59	Phylogenetic gradient analysis: environmental drivers of phylogenetic variation across ecological communities. Plant Ecology, 2015, 216, 709-724.	0.7	13
60	The importance of scaling of multivariate analysis in ecological studies. Ecoscience, 2001, 8, 522-526.	0.6	12
61	Competitive effects between rainbow trout and Atlantic salmon in natural and artificial streams. Ecology of Freshwater Fish, 2016, 25, 248-260.	0.7	12
62	The spatial frequency of climatic conditions affects niche composition and functional diversity of species assemblages: the case of Angiosperms. Ecology Letters, 2020, 23, 254-264.	3.0	12
63	Will technology trample peer review in ecology? Ongoing issues and potential solutions. Oikos, 2016, 125, 3-9.	1.2	11
64	Shifts in Climate Foster Exceptional Opportunities for Species Radiation: The Case of South African Geraniums. PLoS ONE, 2013, 8, e83087.	1.1	10
65	Seasonal trophic dynamics affect zooplankton community variability. Freshwater Biology, 2009, 54, 2351-2363.	1.2	9
66	Epidemiological landscape models reproduce cyclic insect outbreaks. Ecological Complexity, 2017, 31, 78-87.	1.4	9
67	Using directed phylogenetic networks to retrace species dispersal history. Molecular Phylogenetics and Evolution, 2012, 64, 190-197.	1.2	7
68	Delineating marine ecological units: a novel approach for deciding which taxonomic group to use and which taxonomic resolution to choose. Diversity and Distributions, 2015, 21, 1167-1180.	1.9	7
69	Phenotypeâ€dependent selection underlies patterns of sorting across habitats: the case of streamâ€fishes. Oikos, 2017, 126, 1660-1671.	1.2	7
70	Effects of foraging and sexual selection on ecomorphology of a fish with alternative reproductive tactics. Behavioral Ecology, 2013, 24, 1339-1347.	1.0	6
71	Inferring explicit weighted consensus networks to represent alternative evolutionary histories. BMC Evolutionary Biology, 2013, 13, 274.	3.2	5
72	When Are Random Data Not Random, or Is the PTP Test Useful?. Cladistics, 2000, 16, 420-424.	1.5	4

#	Article	IF	CITATIONS
73	Early growth trajectories affect sexual responsiveness. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132899.	1.2	4
74	Disturbanceâ€induced emigration: an overlooked mechanism that reduces metapopulation extinction risk. Ecology, 2021, 102, e03423.	1.5	3
75	Species compositions mediate biomass conservation: The case of lake fish communities. Ecology, 2021, , e3608.	1.5	3
76	Games researchers play: conceptual advancement versus validation strategies. Trends in Ecology and Evolution, 2022, 37, 399-401.	4.2	1