Andrew Gall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5090623/publications.pdf

Version: 2024-02-01

28 papers

1,498 citations

394421 19 h-index 28 g-index

28 all docs

28 docs citations

times ranked

28

1471 citing authors

#	Article	IF	CITATIONS
1	The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quarterly Reviews of Biophysics, 2006, 39, 227-324.	5 . 7	610
2	Electronic Absorption and Ground State Structure of Carotenoid Molecules. Journal of Physical Chemistry B, 2013, 117, 11015-11021.	2.6	93
3	Influence of the Protein Binding Site on the Absorption Properties of the Monomeric Bacteriochlorophyll in Rhodobacter sphaeroides LH2 Complex. Biochemistry, 1997, 36, 16282-16287.	2.5	72
4	Mapping energy transfer channels in fucoxanthin–chlorophyll protein complex. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 241-247.	1.0	59
5	Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins. Biophysical Journal, 2011, 101, 934-942.	0.5	58
6	Characterization of the Different Peripheral Light-Harvesting Complexes from High- and Low-Light Grown Cells from Rhodopseudomonas palustris. Biochemistry, 1999, 38, 5185-5190.	2.5	44
7	Conformation of Bacteriochlorophyll Molecules in Photosynthetic Proteins from Purple Bacteriaâ€. Biochemistry, 1999, 38, 11115-11121.	2.5	43
8	Preferential Incorporation of Coloured-carotenoids Occurs in the LH2 Complexes From Non-sulphur Purple Bacteria Under Carotenoid-limiting Conditions. Photosynthesis Research, 2005, 86, 25-35.	2.9	39
9	The peripheral lightâ€harvesting complexes from purple sulfur bacteria have different â€ [~] ring' sizes. FEBS Letters, 2008, 582, 3650-3656.	2.8	37
10	Membrane Protein Stability: High Pressure Effects on the Structure and Chromophore-Binding Properties of the Light-Harvesting Complex LH2â€. Biochemistry, 2003, 42, 13019-13026.	2.5	36
11	Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins. Nature Communications, 2015, 6, 7771.	12.8	36
12	Ferredoxin:NADP+ Oxidoreductase Association with Phycocyanin Modulates Its Properties. Journal of Biological Chemistry, 2009, 284, 31789-31797.	3.4	35
13	Influence of Carotenoid Molecules on the Structure of the Bacteriochlorophyll Binding Site in Peripheral Light-Harvesting Proteins fromRhodobacter sphaeroidesâ€,‡. Biochemistry, 2003, 42, 7252-7258.	2.5	34
14	Spectral Trends in the Fluorescence of Single Bacterial Light-Harvesting Complexes: Experiments and Modified Redfield Simulations. Biophysical Journal, 2006, 90, 2475-2485.	0.5	33
15	The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochemical Journal, 2011, 440, 51-61.	3.7	33
16	Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 12-18.	1.0	33
17	Bacteriochlorin-protein interactions in native B800-B850, B800 deficient and B800-Bchlap-reconstituted complexes fromRhodopseudomonas acidophila, strain 10050. FEBS Letters, 1999, 449, 269-272.	2.8	28
18	The Effect of Pressure on the BacteriochlorophyllaBinding Sites of the Core Antenna Complex fromRhodospirillum rubrum. Biochemistry, 1998, 37, 14875-14880.	2.5	27

#	Article	IF	CITATION
19	Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynthesis Research, 2014, 121, 69-77.	2.9	22
20	Conformational Switching in a Light-Harvesting Protein as Followed by Single-Molecule Spectroscopy. Biophysical Journal, 2015, 108, 2713-2720.	0.5	20
21	Effect of High Pressure on the Photochemical Reaction Center from Rhodobacter sphaeroides R26.1. Biophysical Journal, 2001, 80, 1487-1497.	0.5	19
22	Exciton Band Structure in Bacterial Peripheral Light-Harvesting Complexes. Journal of Physical Chemistry B, 2012, 116, 5192-5198.	2.6	18
23	Probing the binding sites of exchanged chlorophyllain LH2 by Raman and site-selection fluorescence spectroscopies. FEBS Letters, 2001, 491, 143-147.	2.8	17
24	Structural Asymmetry of Bacterial Reaction Centers: A Qy Resonant Raman Study of the Monomer Bacteriochlorophylls. Journal of Physical Chemistry A, 2002, 106, 3605-3613.	2.5	17
25	Excitons in the LH3 Complexes from Purple Bacteria. Journal of Physical Chemistry B, 2013, 117, 11058-11068.	2.6	14
26	Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1465-1469.	1.0	11
27	The effect of internal voids in membrane proteins: high-pressure study of two photochemical reaction centres from Rhodobacter sphaeroides. FEBS Letters, 2004, 560, 221-225.	2.8	8
28	Apoprotein heterogeneity increases spectral disorder and a step-wise modification of the B850 fluorescence peak position. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 137-144.	1.0	2