Jinfeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5090363/publications.pdf

Version: 2024-02-01

		394421	526287
28	2,030	19	27
papers	citations	h-index	g-index
22	22	22	2424
33	33	33	3434
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome evolution in <i>Oryza</i> allopolyploids of various ages: Insights into the process of diploidization. Plant Journal, 2021, 105, 721-735.	5.7	5
2	Serial single-cell genomics reveals convergent subclonal evolution of resistance as patients with early-stage breast cancer progress on endocrine plus CDK4/6 therapy. Nature Cancer, 2021, 2, 658-671.	13.2	34
3	Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Translational Oncology, 2021, 14, 101181.	3.7	4
4	Genomic diversity generated by a transposable element burst in a rice recombinant inbred population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26288-26297.	7.1	24
5	Inference of Chromosome-Length Haplotypes Using Genomic Data of Three or a Few More Single Gametes. Molecular Biology and Evolution, 2020, 37, 3684-3698.	8.9	11
6	Exploiting collateral sensitivity controls growth of mixed culture of sensitive and resistant cells and decreases selection for resistant cells in a cell line model. Cancer Cell International, 2020, 20, 253.	4.1	17
7	Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice. Nature Communications, 2019, 10, 641.	12.8	34
8	Insight into the evolution and functional characteristics of the panâ€genome assembly from sesame landraces and modern cultivars. Plant Biotechnology Journal, 2019, 17, 881-892.	8.3	79
9	PRAPI: post-transcriptional regulation analysis pipeline for Iso-Seq. Bioinformatics, 2018, 34, 1580-1582.	4.1	27
10	Comparison of <i>Oryza sativa</i> and <i>Oryza brachyantha</i> Genomes Reveals Selection-Driven Gene Escape from the Centromeric Regions. Plant Cell, 2018, 30, 1729-1744.	6.6	22
11	Comparative analysis reveals unexpected genome features of newly isolated Thraustochytrids strains: on ecological function and PUFAs biosynthesis. BMC Genomics, 2018, 19, 541.	2.8	30
12	Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Research, 2018, 46, e126.	14.5	261
13	Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proceedings of the National Academy of Sciences of the United States of America, $2017, 114, E10550-E10559$.	7.1	41
14	RelocaTE2: a high resolution transposable element insertion site mapping tool for population resequencing. PeerJ, 2017, 5, e2942.	2.0	31
15	The impact and origin of copy number variations in the Oryza species. BMC Genomics, 2016, 17, 261.	2.8	30
16	The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nature Genetics, 2014, 46, 982-988.	21.4	342
17	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	12.8	190
18	A Highly Conserved, Small LTR Retrotransposon that Preferentially Targets Genes in Grass Genomes. PLoS ONE, 2012, 7, e32010.	2.5	54

#	Article	IF	CITATIONS
19	Comparative Sequence Analysis of the Ghd7 Orthologous Regions Revealed Movement of Ghd7 in the Grass Genomes. PLoS ONE, 2012, 7, e50236.	2.5	14
20	Population genetics of foxtail millet and its wild ancestor. BMC Genetics, 2010, 11, 90.	2.7	53
21	Orthologous Comparisons of the Hd1 Region across Genera Reveal Hd1 Gene Lability within Diploid Oryza Species and Disruptions to Microsynteny in Sorghum. Molecular Biology and Evolution, 2010, 27, 2487-2506.	8.9	31
22	Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20, 838-849.	12.0	138
23	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
24	Dynamic Evolution of i>Oryza i>Genomes Is Revealed by Comparative Genomic Analysis of a Genus-Wide Vertical Data Set. Plant Cell, 2009, 20, 3191-3209.	6.6	128
25	Comparative sequence analysis of <i>MONOCULM1</i> -orthologous regions in 14 <i>Oryza</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2071-2076.	7.1	119
26	The rates and patterns of insertions, deletions and substitutions in mouse and rat inferred from introns. Science Bulletin, 2008, 53, 2813-2819.	9.0	0
27	A snapshot of the Chinese SOL Project. Journal of Genetics and Genomics, 2008, 35, 387-390.	3.9	3
28	Mutation of the Rice <i>Narrow leaf1</i> Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport. Plant Physiology, 2008, 147, 1947-1959.	4.8	232