
Zhe Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in South China. Environmental Science & Technology, 2022, 56, 6933-6943.	4.6	20
2	Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China. Atmospheric Chemistry and Physics, 2022, 22, 561-575.	1.9	32
3	Assessment of the H2O2 budget at an urban site concerning the HO2 underprediction and the vertical transport from residual layers. Atmospheric Environment, 2022, 272, 118952.	1.9	0
4	Reactions of C ₁₂ –C ₁₄ <i>n</i> -Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. Environmental Science & Technology, 2022, 56, 4859-4870.	4.6	7
5	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	5.4	64
6	Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmospheric Research, 2022, 274, 106184.	1.8	19
7	The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement. Atmospheric Chemistry and Physics, 2022, 22, 7619-7630.	1.9	10
8	Effect of NO2 on nocturnal chemistry of isoprene: Gaseous oxygenated products and secondary organic aerosol formation. Science of the Total Environment, 2022, , 156908.	3.9	0
9	Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
10	Temporal Source Apportionment of PM _{2.5} Over the Pearl River Delta Region in Southern China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
11	Optical properties closure and sources of size-resolved aerosol in Nanjing around summer harvest period. Atmospheric Environment, 2021, 244, 118017.	1.9	4
12	In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport. Chemosphere, 2021, 262, 127745.	4.2	17
13	Simultaneous Gd2O3 clusters decoration and O-doping of g-C3N4 by solvothermal-polycondensation method for reinforced photocatalytic activity towards sulfamerazine. Journal of Hazardous Materials, 2021, 402, 123780.	6.5	17
14	Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China. Chemosphere, 2021, 265, 129072.	4.2	35
15	Secondary Production of Gaseous Nitrated Phenols in Polluted Urban Environments. Environmental Science & Technology, 2021, 55, 4410-4419.	4.6	26
16	Planning considerations of green corridors for the improvement of biodiversity resilience in suburban areas. Journal of Infrastructure Preservation and Resilience, 2021, 2, 6.	1.5	4
17	Insights into seasonal variation of wet deposition over southeast Asia via precipitation adjustment from the findings of MICS-Asia III. Atmospheric Chemistry and Physics, 2021, 21, 8709-8734.	1.9	8
18	Measurement of heterogeneous uptake of NO2 on inorganic particles, sea water and urban grime. Journal of Environmental Sciences, 2021, 106, 124-135.	3.2	17

#	Article	IF	CITATIONS
19	Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment. Environmental Science & Technology, 2021, 55, 13646-13656.	4.6	32
20	Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Science of the Total Environment, 2021, 789, 147971.	3.9	20
21	Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NO _{<i>x</i>} in eastern China. Atmospheric Chemistry and Physics. 2021. 21. 14789-14814.	1.9	26
22	Winter ClNO ₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. Atmospheric Chemistry and Physics, 2021, 21, 15985-16000.	1.9	8
23	Visible-light photocatalytic degradation of bisphenol A using cobalt-to-oxygen doped graphitic carbon nitride with nitrogen vacancies via metal-to-ligand charge transfer. Journal of Hazardous Materials, 2020, 384, 121247.	6.5	48
24	Transport Patterns, Size Distributions, and Depolarization Characteristics of Dust Particles in East Asia in Spring 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031752.	1.2	13
25	Efficient Conversion of NO to NO ₂ on SO ₂ -Aged MgO under Atmospheric Conditions. Environmental Science & Technology, 2020, 54, 11848-11856.	4.6	15
26	Spatio-Temporal Variations of Atmospheric NH3 over East Asia by Comparison of Chemical Transport Model Results, Satellite Retrievals and Surface Observations. Atmosphere, 2020, 11, 900.	1.0	4
27	Heterogeneous N ₂ O ₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. Atmospheric Chemistry and Physics, 2020, 20, 4367-4378.	1.9	33
28	Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China. Science of the Total Environment, 2020, 739, 139791.	3.9	8
29	Significant production of ClNO ₂ and possible source of Cl ₂ from N ₂ 0 ₅ uptake at a suburban site in eastern China. Atmospheric Chemistry and Physics, 2020, 20, 6147-6158.	1.9	29
30	Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR. Atmospheric Chemistry and Physics, 2020, 20, 391-407.	1.9	25
31	Atmospheric Photosensitization: A New Pathway for Sulfate Formation. Environmental Science & Technology, 2020, 54, 3114-3120.	4.6	65
32	Comprehensive characterization of hygroscopic properties of methanesulfonates. Atmospheric Environment, 2020, 224, 117349.	1.9	5
33	Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride. Environmental Science and Technology Letters, 2020, 7, 70-75.	3.9	12
34	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	1.2	30
35	Evaluation and uncertainty investigation of the NO ₂ , CO and NH ₃ modeling over China under the framework of MICS-AsiaÂIII. Atmospheric Chemistry and Physics, 2020, 20, 181-202.	1.9	41
36	Paradigm shift in aerosol chemical composition over regions downwind of China. Scientific Reports, 2020, 10, 6450.	1.6	45

#	Article	IF	CITATIONS
37	MICS-Asia III: overview of model intercomparison and evaluation of acid deposition over Asia. Atmospheric Chemistry and Physics, 2020, 20, 2667-2693.	1.9	47
38	Model Inter-Comparison Study for Asia (MICS-Asia) phase III: multimodel comparison of reactive nitrogen deposition over China. Atmospheric Chemistry and Physics, 2020, 20, 10587-10610.	1.9	23
39	Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation. Atmospheric Chemistry and Physics, 2020, 20, 11451-11467.	1.9	29
40	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	1.9	14
41	Characterization of organic aerosols and their precursors in southern China during a severe haze episode in January 2017. Science of the Total Environment, 2019, 691, 101-111.	3.9	33
42	Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement. Atmospheric Chemistry and Physics, 2019, 19, 8569-8590.	1.9	81
43	Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 2019, 19, 8801-8816.	1.9	137
44	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	1.1	44
45	Hygroscopic Properties of Saline Mineral Dust From Different Regions in China: Geographical Variations, Compositional Dependence, and Atmospheric Implications. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10844-10857.	1.2	26
46	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
47	Water-soluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong. Science of the Total Environment, 2019, 697, 134095.	3.9	10
48	The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. Atmospheric Chemistry and Physics, 2019, 19, 1-14.	1.9	109
49	Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes. Atmospheric Chemistry and Physics, 2019, 19, 219-232.	1.9	22
50	Sources of methacrolein and methyl vinyl ketone and their contributions to methylglyoxal and formaldehyde at a receptor site in Pearl River Delta. Journal of Environmental Sciences, 2019, 79, 1-10.	3.2	16
51	Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China. Science of the Total Environment, 2019, 677, 637-647.	3.9	38
52	Size Distribution and Depolarization Properties of Aerosol Particles over the Northwest Pacific and Arctic Ocean from Shipborne Measurements during an R/V <i>Xuelong</i> Cruise. Environmental Science & Technology, 2019, 53, 7984-7995.	4.6	6
53	Theoretical evaluation of different factors affecting the HO2 uptake coefficient driven by aqueous-phase first-order loss reaction. Science of the Total Environment, 2019, 683, 146-153.	3.9	8
54	Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. Atmosphere, 2019, 10, 204.	1.0	16

#	Article	IF	CITATIONS
55	Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM. Atmospheric Environment, 2019, 204, 1-11.	1.9	28
56	Hygroscopic Properties of 11 Pollen Species in China. ACS Earth and Space Chemistry, 2019, 3, 2678-2683.	1.2	16
57	Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III – Part 1: Overview. Atmospheric Chemistry and Physics, 2019, 19, 12993-13015.	1.9	46
58	Dust Heterogeneous Reactions during Long-Range Transport of a Severe Dust Storm in May 2017 over East Asia. Atmosphere, 2019, 10, 680.	1.0	11
59	Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. Atmospheric Environment, 2019, 201, 13-17.	1.9	18
60	Polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 within boundary layer: Cloud/fog and regional transport. Science of the Total Environment, 2018, 627, 613-621.	3.9	17
61	Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific. Environmental Pollution, 2018, 237, 868-877.	3.7	8
62	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. Environmental Science & amp; Technology, 2018, 52, 5125-5134.	4.6	19
63	"New―Reactive Nitrogen Chemistry Reshapes the Relationship of Ozone to Its Precursors. Environmental Science & Technology, 2018, 52, 2810-2818.	4.6	44
64	Importance of mineral dust and anthropogenic pollutants mixing during a long-lasting high PM event over East Asia. Environmental Pollution, 2018, 234, 368-378.	3.7	36
65	Nighttime NO loss and CINO2 formation in the residual layer of a polluted region: Insights from field measurements and an iterative box model. Science of the Total Environment, 2018, 622-623, 727-734.	3.9	28
66	Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2495-2509.	1.9	69
67	Trace elements in PM2.5 in Shandong Province: Source identification and health risk assessment. Science of the Total Environment, 2018, 621, 558-577.	3.9	99
68	Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China. Atmospheric Chemistry and Physics, 2018, 18, 17515-17527.	1.9	76
69	PAN–Precursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. Atmosphere, 2018, 9, 372.	1.0	13
70	An in situ flow tube system for direct measurement of N ₂ O ₅ heterogeneous uptake coefficients in polluted environments. Atmospheric Measurement Techniques, 2018, 11, 5643-5655.	1.2	4
71	Heterogeneous N ₂ O ₅ uptake coefficient and production yield of CINO ₂ in polluted northern China: roles of aerosol water content and chemical composition. Atmospheric Chemistry and Physics, 2018, 18, 13155-13171.	1.9	67
72	Simulation on different response characteristics of aerosol particle number concentration and mass concentration to emission changes over mainland China. Science of the Total Environment, 2018, 643, 692-703.	3.9	27

#	Article	IF	CITATIONS
73	PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmospheric Research, 2018, 212, 285-295.	1.8	57
74	PM2.5 Exposure Suppresses Dendritic Maturation in Subgranular Zone in Aged Rats. Neurotoxicity Research, 2017, 32, 50-57.	1.3	19
75	SO ₂ Initiates the Efficient Conversion of NO ₂ to HONO on MgO Surface. Environmental Science & Technology, 2017, 51, 3767-3775.	4.6	76
76	Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model. Atmospheric Environment, 2017, 163, 44-56.	1.9	37
77	Revisiting nitrous acid (HONO) emission from on-road vehicles: A tunnel study with a mixed fleet. Journal of the Air and Waste Management Association, 2017, 67, 797-805.	0.9	36
78	Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China. Atmospheric Environment, 2017, 159, 83-91.	1.9	60
79	Observations of N 2 O 5 and ClNO 2 at a polluted urban surface site in North China: High N 2 O 5 uptake coefficients and low ClNO 2 product yields. Atmospheric Environment, 2017, 156, 125-134.	1.9	90
80	Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Scientific Reports, 2017, 7, 335.	1.6	53
81	Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics. Environmental Pollution, 2017, 231, 1302-1313.	3.7	13
82	Photochemical Smog in Southern China: A Synthesis of Observations and Model Investigations of the Sources and Effects of Nitrous Acid. , 2017, , 69-85.		0
83	Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity. Atmospheric Environment, 2017, 167, 223-234.	1.9	25
84	Dust Acid Uptake Analysis during Long-Lasting Dust and Pollution Episodes over East Asia Based on Synergetic Observation and Chemical Transport Model. Scientific Online Letters on the Atmosphere, 2017, 13, 109-113.	0.6	4
85	Seasonal variation of fine- and coarse-mode nitrates and related aerosols over East Asia: synergetic observations and chemical transport model analysis. Atmospheric Chemistry and Physics, 2017, 17, 14181-14197.	1.9	23
86	Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments. Atmospheric Chemistry and Physics, 2017, 17, 13001-13016.	1.9	40
87	Nitrate transboundary heavy pollution over East Asia in winter. Atmospheric Chemistry and Physics, 2017, 17, 3823-3843.	1.9	57
88	Fast heterogeneous N ₂ O ₅ uptake and ClNO ₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmospheric Chemistry and Physics, 2017, 17, 12361-12378.	1.9	92
89	Simultaneous Dust and Pollutant Transport over East Asia: The Tripartite Environment Ministers Meeting March 2014 Case Study. Scientific Online Letters on the Atmosphere, 2017, 13, 47-52.	0.6	12
90	PM2.5 Characteristics in Qingdao and across Coastal Cities in China. Atmosphere, 2017, 8, 77.	1.0	24

#	Article	IF	CITATIONS
91	Importance of Long-Range Nitrate Transport Based on Long-Term Observation and Modeling of Dust and Pollutants over East Asia. Aerosol and Air Quality Research, 2017, 17, 3052-3064.	0.9	30
92	Modeling the Long-Range Transport of Particulate Matters for January in East Asia using NAQPMS and CMAQ. Aerosol and Air Quality Research, 2017, 17, 3065-3078.	0.9	23
93	Influence of Cloud/Fog on Atmospheric VOCs in the Free Troposphere: A Case Study at Mount Tai in Eastern China. Aerosol and Air Quality Research, 2017, 17, 2401-2412.	0.9	13
94	Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	1.9	146
95	Nighttime chemistry at a high altitude site above Hong Kong. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2457-2475.	1.2	78
96	Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2476-2489.	1.2	118
97	Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 2016, 16, 9891-9903.	1.9	168
98	Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 2016, 16, 10637-10650.	1.9	192
99	Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality. Atmospheric Chemistry and Physics, 2016, 16, 9863-9873.	1.9	21
100	Enhanced catalytic reduction of N-nitrosodimethylamine over bimetallic Pd-Ni catalysts. Journal of Molecular Catalysis A, 2016, 421, 167-177.	4.8	16
101	Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Science China Earth Sciences, 2014, 57, 3-13.	2.3	251
102	Atmospheric Peroxides in a Polluted Subtropical Environment: Seasonal Variation, Sources and Sinks, and Importance of Heterogeneous Processes. Environmental Science & Technology, 2014, 48, 1443-1450.	4.6	56
103	Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China. Atmospheric Environment, 2014, 88, 219-229.	1.9	39
104	Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmospheric Environment, 2012, 63, 203-212.	1.9	58
105	The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmospheric Environment, 2012, 63, 68-76.	1.9	195
106	Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing. Atmospheric Environment, 2012, 60, 467-476.	1.9	88
107	Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China. Atmospheric Environment, 2012, 46, 516-527.	1.9	73
108	Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric Environment, 2012, 51, 11-20.	1.9	39

#	Article	IF	CITATIONS
109	Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmospheric Environment, 2012, 55, 506-514.	1.9	114
110	Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods. Journal of Environmental Monitoring, 2011, 13, 1662.	2.1	40
111	Source and variation of carbonaceous aerosols at Mount Tai, North China: Results from a semi-continuous instrument. Atmospheric Environment, 2011, 45, 1655-1667.	1.9	38
112	Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmospheric Chemistry and Physics, 2010, 10, 3953-3964.	1.9	86
113	The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate. Aerosol Science and Technology, 2010, 44, 939-953.	1.5	56
114	Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534Âm a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry, 2009, 64, 107-127.	1.4	71
115	Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Science of the Total Environment, 2007, 383, 164-173.	3.9	123