
James L Coyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishing Reference Values for Temporal Kinematic Swallow Events Across the Lifespan in Healthy Community Dwelling Adults Using High-Resolution Cervical Auscultation. Dysphagia, 2022, 37, 664-675.	1.8	5
2	Characterizing Effortful Swallows from Healthy Community Dwelling Adults Across the Lifespan Using High-Resolution Cervical Auscultation Signals and MBSImP Scores: A Preliminary Study. Dysphagia, 2022, 37, 1103-1111.	1.8	2
3	Improving Non-Invasive Aspiration Detection With Auxiliary Classifier Wasserstein Generative Adversarial Networks. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1263-1272.	6.3	5
4	A Preliminary Investigation of Similarities of High Resolution Cervical Auscultation Signals Between Thin Liquid Barium and Water Swallows. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-9.	3.7	4
5	Cervical Vertebral Height Approximates Hyoid Displacement in Videofluoroscopic Images of Healthy Adults. Dysphagia, 2022, 37, 1689-1696.	1.8	4
6	How Closely do Machine Ratings of Duration of UES Opening During Videofluoroscopy Approximate Clinician Ratings Using Temporal Kinematic Analyses and the MBSImP?. Dysphagia, 2021, 36, 707-718.	1.8	14
7	A Preliminary Investigation of Whether HRCA Signals Can Differentiate Between Swallows from Healthy People and Swallows from People with Neurodegenerative Diseases. Dysphagia, 2021, 36, 635-643.	1.8	17
8	Mansoura Fiberoptic Endoscopic Evaluation of Swallowing Residue Rating Scale (MFRRS): An Anatomically Based Tool – A Preliminary Study. Folia Phoniatrica Et Logopaedica, 2021, 73, 478-490.	1.1	7
9	Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals. Dysphagia, 2021, 36, 259-269.	1.8	25
10	Upper Esophageal Sphincter Opening Segmentation With Convolutional Recurrent Neural Networks in High Resolution Cervical Auscultation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 493-503.	6.3	29
11	Estimation of laryngeal closure duration during swallowing without invasive X-rays. Future Generation Computer Systems, 2021, 115, 610-618.	7.5	17
12	Anterior–posterior distension of maximal upper esophageal sphincter opening is correlated with high-resolution cervical auscultation signal features. Physiological Measurement, 2021, 42, 035002.	2.1	5
13	A generalized equation approach for hyoid bone displacement and penetration–aspiration scale analysis. SN Applied Sciences, 2021, 3, 1.	2.9	6
14	Characterizing Swallows From People With Neurodegenerative Diseases Using High-Resolution Cervical Auscultation Signals and Temporal and Spatial Swallow Kinematic Measurements. Journal of Speech, Language, and Hearing Research, 2021, 64, 3416-3431.	1.6	6
15	Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning. Medical Image Analysis, 2021, 74, 102218.	11.6	6
16	The Prediction of Risk of Penetration–Aspiration Via Hyoid Bone Displacement Features. Dysphagia, 2020, 35, 66-72.	1.8	20
17	Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings. Scientific Reports, 2020, 10, 8704.	3.3	37
18	High-Resolution Cervical Auscultation and Data Science: New Tools to Address an Old Problem. American Journal of Speech-Language Pathology, 2020, 29, 992-1000.	1.8	12

JAMES L COYLE

#	Article	IF	CITATIONS
19	How Important Is Randomization of Swallows During Kinematic Analyses of Swallow Function?. American Journal of Speech-Language Pathology, 2020, 29, 1650-1654.	1.8	3
20	Automatic Estimation of Laryngeal Vestibule Closure Duration Using High-Resolution Cervical Auscultation Signals. Perspectives of the ASHA Special Interest Groups, 2020, 5, 1647-1656.	0.8	10
21	ARTIFICIAL INTELLIGENCE AND DYSPHAGIA: NOVEL SOLUTIONS TO OLD PROBLEMS. Arquivos De Gastroenterologia, 2020, 57, 343-346.	0.8	4
22	The Safety, Tolerability, and Impact of Respiratory–Swallow Coordination Training and Expiratory Muscle Strength Training on Pulmonary, Cough, and Swallow Function Surrogates in Amyotrophic Lateral Sclerosis. Perspectives of the ASHA Special Interest Groups, 2020, 5, 1603-1615.	0.8	0
23	Neck sensor-supported hyoid bone movement tracking during swallowing. Royal Society Open Science, 2019, 6, 181982.	2.4	30
24	The Association of High Resolution Cervical Auscultation Signal Features With Hyoid Bone Displacement During Swallowing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1810-1816.	4.9	21
25	High-Resolution Cervical Auscultation Signal Features Reflect Vertical and Horizontal Displacements of the Hyoid Bone During Swallowing. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-9.	3.7	22
26	Computational Deglutition: Using Signal- and Image-Processing Methods to Understand Swallowing and Associated Disorders [Life Sciences]. IEEE Signal Processing Magazine, 2019, 36, 138-146.	5.6	29
27	Detection of Swallow Kinematic Events From Acoustic High-Resolution Cervical Auscultation Signals in Patients With Stroke. Archives of Physical Medicine and Rehabilitation, 2019, 100, 501-508.	0.9	24
28	Deep learning for classification of normal swallows in adults. Neurocomputing, 2018, 285, 1-9.	5.9	25
29	Deep Belief Networks for Electroencephalography: A Review of Recent Contributions and Future Outlooks. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 642-652.	6.3	81
30	Influence of attention and bolus volume on brain organization during swallowing. Brain Structure and Function, 2018, 223, 955-964.	2.3	13
31	Developing Viscosity Modelling for Traditional Liquids in Egypt. Folia Phoniatrica Et Logopaedica, 2018, 70, 37-43.	1.1	1
32	Automatic hyoid bone detection in fluoroscopic images using deep learning. Scientific Reports, 2018, 8, 12310.	3.3	44
33	Dysphagia and its effects on swallowing sounds and vibrations in adults. BioMedical Engineering OnLine, 2018, 17, 69.	2.7	26
34	Anatomical Directional Dissimilarities in Tri-axial Swallowing Accelerometry Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 447-458.	4.9	20
35	A comparison between swallowing sounds and vibrations in patients with dysphagia. Computer Methods and Programs in Biomedicine, 2017, 144, 179-187.	4.7	16
36	Differences in brain networks during consecutive swallows detected using an optimized vertex–frequency algorithm. Neuroscience, 2017, 344, 113-123.	2.3	12

JAMES L COYLE

#	Article	IF	CITATIONS
37	A fast algorithm for vertex-frequency representations of signals on graphs. Signal Processing, 2017, 131, 483-491.	3.7	17
38	The effects of compressive sensing on extracted features from tri-axial swallowing accelerometry signals. , 2016, 9857, .		1
39	Functional connectivity patterns of normal human swallowing: difference among various viscosity swallows in normal and chin-tuck head positions. Brain Research, 2016, 1652, 158-169.	2.2	17
40	Correlating Tri-Accelerometer Swallowing Vibrations and Hyoid Bone Movement in Patients With Dysphagia. , 2016, , .		5
41	A statistical analysis of cervical auscultation signals from adults with unsafe airway protection. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 7.	4.6	26
42	A matched dual-tree wavelet denoising for tri-axial swallowing vibrations. Biomedical Signal Processing and Control, 2016, 27, 112-121.	5.7	9
43	Characterizing functional connectivity patterns during saliva swallows in different head positions. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 61.	4.6	8
44	Dysphagia Screening: Contributions of Cervical Auscultation Signals and Modern Signal-Processing Techniques. IEEE Transactions on Human-Machine Systems, 2015, 45, 465-477.	3.5	56
45	Characteristics of Dry Chin-Tuck Swallowing Vibrations and Sounds. IEEE Transactions on Biomedical Engineering, 2015, 62, 2456-2464.	4.2	14
46	Decoding human swallowing via electroencephalography: a state-of-the-art review. Journal of Neural Engineering, 2015, 12, 051001.	3.5	33
47	A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals. Computers in Biology and Medicine, 2015, 59, 10-18.	7.0	58
48	A comparative analysis of swallowing accelerometry and sounds during saliva swallows. BioMedical Engineering OnLine, 2015, 14, 3.	2.7	49
49	Understanding differences between healthy swallows and penetration-aspiration swallows via compressive sensing of tri-axial swallowing accelerometry signals. , 2014, 9190, 91090M.		5
50	Tele-Dysphagia Management: An Opportunity for Prevention, Cost-Savings and Advanced Training. International Journal of Telerehabilitation, 2012, 4, 41-46.	1.8	20
51	Exercise for Better ALS Management?. ASHA Leader, 2012, 17, .	0.1	1
52	Cervical Auscultation Synchronized with Images from Endoscopy Swallow Evaluations. Dysphagia, 2007, 22, 290-298.	1.8	48
53	Differentiation of Normal and Abnormal Airway Protection during Swallowing Using the Penetration–Aspiration Scale. Dysphagia, 1999, 14, 228-232.	1.8	251
54	Letter to the Editor Regarding "Metadeglutition? Rate of Aspiration-Related Events in Healthy Females Using a Novel Data Collection App― Perspectives of the ASHA Special Interest Groups, 0, , 1-3.	0.8	1

#	Article	IF	CITATIONS
55	Temporal Sequence of Laryngeal Vestibule Closure and Reopening is Associated With Airway Protection. Laryngoscope, 0, , .	2.0	1