
Osamu Tanaike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/508981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fractionation and Characterization of Glycol Lignins by Stepwise-pH Precipitation of Japanese Cedar/Poly(ethylene glycol) Solvolysis Liquor. ACS Sustainable Chemistry and Engineering, 2021, 9, 756-764.	3.2	6
2	Unique Gelation of Polyethylene Glycol-Modified Lignin in Hot Ethanol and Its Application to the Synthesis of Epoxy Resin with a Large Lignin Content. Industrial & Engineering Chemistry Research, 2021, 60, 17045-17054.	1.8	3
3	Study on the cross-sectional microstructure of a thin ceramic coating on stainless steel surface fabricated by the application and calcination of an aqueous clay mineral paste. Applied Clay Science, 2020, 193, 105665.	2.6	3
4	Solvent-Free Fabrication of an Elastomeric Epoxy Resin Using Glycol Lignin from Japanese Cedar. ACS Omega, 2019, 4, 17251-17256.	1.6	17
5	lodine-assisted control of the pore and morphology in the porous carbons prepared by the carbonization of ion-exchange resins. Microporous and Mesoporous Materials, 2019, 282, 237-242.	2.2	7

$_{6}$ Successful Mesoporous Silica Encapsulation of Optimally Functional EcDOS (E. coli Direct Oxygen) Tj ETQq0 0 0 rg $_{0.8}^{BT}$ /Overlock 10 Tf 50

7	Coating Type Clay Insulating Layer for Metal Base Thin Film Sensor Devices. IEEJ Transactions on Sensors and Micromachines, 2019, 139, 201-208.	0.0	1
8	High-performance bioelectrocatalysts created by immobilization of an enzyme into carbon-coated composite membranes with nano-tailored structures. Journal of Materials Chemistry A, 2017, 5, 20244-20251.	5.2	15
9	Effect of the amount of iodine introduced and the Na content of carbon precursors on the preparation of porous carbons from iodine-treated carboxymethylcellulose. Tanso, 2017, 2017, 133-138.	0.1	2
10	Carbonization yield and porosity of carbons derived from various raw saccharides after iodine treatment. Tanso, 2016, 2016, 10-14.	0.1	4
11	A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte. Journal of Physics and Chemistry of Solids, 2016, 91, 122-127.	1.9	8
12	Application of Carbon Materials Derived from Fluorocarbons in an Electrochemical Capacitor. , 2015, , 415-430.		3
13	Systematic changes in pore size distribution of template carbon obtained via chemical reaction between different cellulose precursors and halogens. Carbon, 2014, 77, 1191-1194.	5.4	2
14	Template Synthesis of Nanoporous Carbons through Iodine Stabilization of Carboxymethylcellulose Sodium. Chemistry Letters, 2012, 41, 53-55.	0.7	6
15	Exfoliation of graphite by pyrolysis of bromine–graphite intercalation compounds in a vacuum glass tube. Journal of Physics and Chemistry of Solids, 2012, 73, 1420-1423.	1.9	5
16	Carbon materials for electrochemical capacitors. Journal of Power Sources, 2010, 195, 7880-7903.	4.0	1,271
17	Compact and Light Supercapacitor Electrodes from a Surfaceâ€Only Solid by Opened Carbon Nanotubes with 2 200 m ² g ^{â^1} Surface Area. Advanced Functional Materials, 2010, 20, 422-428.	7.8	145
18	Effect of iodine treatment on morphological control in carbonization of polysaccharides. Thermochimica Acta, 2010, 498, 33-38.	1.2	25

OSAMU TANAIKE

#	Article	IF	CITATIONS
19	Electrochemical Behavior of Halogen-Doped Carbon Materials as Capacitor Electrodes. ECS Meeting Abstracts, 2010, , .	0.0	0
20	Electrochemical Behavior of Halogen-Doped Carbon Materials as Capacitor Electrodes. ECS Transactions, 2010, 33, 71-76.	0.3	4
21	Hole Opening of Carbon Nanotubes and Their Capacitor Performance. Energy & Fuels, 2010, 24, 3373-3377.	2.5	39
22	Capacitor Properties and Pore Structure of Single- and Double-Walled Carbon Nanotubes. Electrochemical and Solid-State Letters, 2009, 12, K14.	2.2	27
23	Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect. Solid State Ionics, 2009, 180, 381-385.	1.3	72
24	Debundling of SWCNTs through a simple intercalation technique. Electrochemistry Communications, 2009, 11, 1441-1444.	2.3	11
25	Preparation and porous control of amorphous carbons by co-defluorination of perfluorooctane and octafluorotoluene in vapor phases at 423 K. Journal of Non-Crystalline Solids, 2009, 355, 2405-2409.	1.5	1
26	Supercapacitors using Pure Single-walled Carbon Nanotubes. Carbon Letters, 2009, 10, 90-93.	3.3	20
27	Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon, 2008, 46, 1999-2001.	5.4	108
28	Structural change of carbon material obtained by defluorination of perfluoronaphthalene at very low temperature and their lithium insertion property. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 237-241.	1.7	1
29	Preparation of nanoporous carbons by defluorination. Tanso, 2008, 2008, 92-97.	0.1	1
30	High rate capability of the Mg-doped Li–Mn–O spinel prepared via coprecipitated precursor. Journal of Power Sources, 2007, 168, 282-287.	4.0	37
31	Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials, 2006, 5, 987-994.	13.3	1,811
32	TEM and electron tomography studies of carbon nanospheres for lithium secondary batteries. Carbon, 2006, 44, 2558-2564.	5.4	56
33	Porous Carbons from Octafluoronaphthalene by Chemical Reaction and Heat-treatment. Chemistry Letters, 2005, 34, 1546-1547.	0.7	4
34	Preparation of porous carbon by defluorination of PTFE and its application to electric double layer capacitor. Tanso, 2004, 2004, 285-294.	0.1	13
35	Preparation and pore control of highly mesoporous carbon from defluorinated PTFE. Carbon, 2003, 41, 1759-1764.	5.4	77
36	Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. Journal of Solid State Chemistry, 2003, 170, 39-47.	1.4	175

Osamu Tanaike

#	Article	IF	CITATIONS
37	Preparation and Characterization of Porous Carbons By Defluorination of Ptfe with Alkali Metals - Effect of Alkali Metals on the Porous Structure Molecular Crystals and Liquid Crystals, 2002, 388, 45-50.	0.4	10
38	Electric Double Layer Capacitance Performance of Porous Carbons Prepared by Defluorination of Polytetrafluoroethylene with Potassium. Electrochemical and Solid-State Letters, 2002, 5, A283.	2.2	27
39	Mesoporous carbon from poly(tetrafluoroethylene) defluorinated by sodium metal. Carbon, 2002, 40, 457-459.	5.4	29
40	Reversible water adsorption into carbonized polyimide films in ambient atmosphere. Carbon, 2002, 40, 2502-2505.	5.4	11
41	Adsorption properties of air-oxidized carbon sphere derived from phenol resin. Synthetic Metals, 2001, 125, 255-257.	2.1	6
42	Determining factors for the intercalation into carbon materials from organic solutions. Carbon, 2001, 39, 1083-1090.	5.4	25
43	Degradation of carbon materials by intercalation. Carbon, 1999, 37, 1759-1769.	5.4	17
44	Different reactivity of carbon materials for intercalation of iron chloride in its nitromethane solution. Synthetic Metals, 1999, 99, 105-110.	2.1	15
45	Effect of ether coordination for sodium intercalation into poly(vinyl chloride) cokes with different graphitization degree. Synthetic Metals, 1998, 96, 109-116.	2.1	21
46	Sodium intercalation into various carbon hosts in 2-methyltetrahydrofuran solution. Synthetic Metals, 1997, 90, 69-72.	2.1	11
47	Ternary intercalation compounds of carbon materials having a low graphitization degree with alkali metals. Carbon, 1997, 35, 831-836.	5.4	38
48	Formation of Naî—,THFî—,graphite intercalation compounds. Journal of Physics and Chemistry of Solids, 1996, 57, 795-798.	1.9	12
49	Host effect on the formation of sodium-tetrahydrofuran-graphite intercalation compounds. Synthetic Metals, 1995, 73, 77-81.	2.1	40
50	Discussion on the structural criteria for the intercalation of sulfuric acid into carbon materials. Synthetic Metals, 1995, 73, 83-85.	2.1	8