Pao-Hsiung Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089582/publications.pdf

Version: 2024-02-01

840776 552781 29 681 11 26 citations h-index g-index papers 29 29 29 502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer Methods in Applied Mechanics and Engineering, 2022, 395, 114909.	6.6	57
2	Development of an improved divergenceâ€freeâ€condition compensated coupled framework to solve flow problems with timeâ€varying geometries. International Journal for Numerical Methods in Fluids, 2021, 93, 44-70.	1.6	4
3	An Immersed Boundary Method Based Improved Divergence-Free-Condition Compensated Coupled Framework for Solving the Flow–Particle Interactions. Energies, 2021, 14, 1675.	3.1	О
4	Numerical study of incompressible interfacial flows by an one-step level set method. Numerical Heat Transfer; Part A: Applications, 2020, 78, 636-655.	2.1	1
5	Influence of leading-edge protuberances of fx63 airfoil for horizontal-axis wind turbine on power performance. Sustainable Energy Technologies and Assessments, 2020, 38, 100675.	2.7	11
6	A coupled phase field framework for solving incompressible two-phase flows. Journal of Computational Physics, 2019, 392, 115-140.	3.8	33
7	Development of GM2015 Computational Fluid Dynamics (CFD) Methodology for Naturally-ventilated Non-residential Buildings (NRB) in Singapore. IOP Conference Series: Earth and Environmental Science, 2019, 238, 012079.	0.3	1
8	Porous media representation of louvers in building simulations for natural ventilation. Journal of Building Performance Simulation, 2019, 12, 494-503.	2.0	7
9	An improved divergence-free-condition compensated method for solving incompressible flows on collocated grids. Computers and Fluids, 2018, 162, 39-54.	2.5	9
10	An experimental and numerical investigation on the power performance of 150ÂkW horizontal axis wind turbine. Renewable Energy, 2017, 113, 85-93.	8.9	11
11	Determination of Optimal Parameters for Wind Driven Rain CFD Simulation for Building Design in the Tropics. Procedia Engineering, 2017, 180, 1345-1354.	1.2	4
12	CFD Methodology Development for Singapore Green Mark Building Application. Procedia Engineering, 2017, 180, 1596-1602.	1.2	8
13	Flux-splitting dispersion-relation-preserving dual-compact upwind scheme for solving the Maxwell's equations on non-staggered grids. Applied Mathematical Modelling, 2013, 37, 4747-4758.	4.2	O
14	On the development of a high-order compact scheme for exhibiting the switching and dissipative solution natures in the Camassa–Holm equation. Journal of Computational Physics, 2011, 230, 5399-5416.	3.8	9
15	Development of level set method with good area preservation to predict interface in twoâ€phase flows. International Journal for Numerical Methods in Fluids, 2011, 67, 109-134.	1.6	20
16	A conservative phase field method for solving incompressible two-phase flows. Journal of Computational Physics, 2011, 230, 185-204.	3.8	304
17	Development of an Upwinding Scheme through the Minimization of Modified Wavenumber Error for the Incompressible Navier-Stokes Equations. Numerical Heat Transfer, Part B: Fundamentals, 2011, 60, 179-202.	0.9	4
18	A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10, 1503-1515.	0.8	2

#	Article	IF	CITATIONS
19	On the development of a tripleâ€preserving Maxwell's equations solver in nonâ€staggered grids. International Journal for Numerical Methods in Fluids, 2010, 63, 1328-1346.	1.6	1
20	A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier–Stokes equations in time-varying complex geometries. Journal of Computational Physics, 2010, 229, 4476-4500.	3.8	49
21	Viscous and inviscid regularizations in a class of evolutionary partial differential equations. Journal of Computational Physics, 2010, 229, 6676-6687.	3.8	6
22	A sixth-order dual preserving algorithm for the Camassa–Holm equation. Journal of Computational and Applied Mathematics, 2010, 233, 2767-2778.	2.0	7
23	Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows. Journal of Computational Physics, 2009, 228, 661-686.	3.8	46
24	On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection–diffusion equation. Journal of Computational Physics, 2009, 228, 3640-3655.	3.8	26
25	A dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation. Journal of Computational Physics, 2009, 228, 8034-8052.	3.8	17
26	An effective explicit pressure gradient scheme implemented in the two-level non-staggered grids for incompressible Navier–Stokes equations. Journal of Computational Physics, 2008, 227, 4018-4037.	3.8	12
27	A divergence-free-condition compensated method for incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 4479-4494.	6.6	16
28	Development of a Dispersion Relation-Preserving Upwinding Scheme for Incompressible Navier–Stokes Equations on NonStaggered Grids. Numerical Heat Transfer, Part B: Fundamentals, 2005, 48, 543-569.	0.9	15
29	Airflow Modelling Software Development for Natural Ventilation Design - Green Building Environment Simulation Technology. IOP Conference Series: Earth and Environmental Science, 0, 238, 012077.	0.3	1