
J Antonio BÃ;rcena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089385/publications.pdf

Version: 2024-02-01

LANTONIO RÃ: PCENA

#	Article	IF	CITATIONS
1	Deficiency of Parkinson's Related Protein DJ-1 Alters Cdk5 Signalling and Induces Neuronal Death by Aberrant Cell Cycle Re-entry. Cellular and Molecular Neurobiology, 2023, 43, 757-769.	3.3	5
2	A conserved cysteineâ€based redox mechanism sustains TFEB/HLHâ€30 activity under persistent stress. EMBO Journal, 2021, 40, e105793.	7.8	22
3	Improved integrative analysis of the thiol redox proteome using filter-aided sample preparation. Journal of Proteomics, 2020, 214, 103624.	2.4	14
4	Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biology, 2020, 37, 101737.	9.0	34
5	Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biology, 2020, 36, 101510.	9.0	45
6	Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer. Redox Biology, 2020, 34, 101528.	9.0	16
7	Thioredoxin Downregulation Enhances Sorafenib Effects in Hepatocarcinoma Cells. Antioxidants, 2019, 8, 501.	5.1	11
8	Peroxiredoxin 6 Down-Regulation Induces Metabolic Remodeling and Cell Cycle Arrest in HepG2 Cells. Antioxidants, 2019, 8, 505.	5.1	16
9	Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biology, 2019, 21, 101049.	9.0	28
10	Peroxiredoxins: Types, Characteristics and Functions in Higher Plants. , 2018, , 95-121.		6
11	Regulation of Cell Survival, Apoptosis, and Epithelial-to-Mesenchymal Transition by Nitric Oxide-Dependent Post-Translational Modifications. Antioxidants and Redox Signaling, 2018, 29, 1312-1332.	5.4	28
12	Glutathione Is the Resolving Thiol for Thioredoxin Peroxidase Activity of 1-Cys Peroxiredoxin Without Being Consumed During the Catalytic Cycle. Antioxidants and Redox Signaling, 2016, 24, 115-128.	5.4	36
13	Redox regulation of metabolic and signaling pathways by thioredoxin and glutaredoxin in NOS-3 overexpressing hepatoblastoma cells. Redox Biology, 2015, 6, 122-134.	9.0	23
14	Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells. Redox Biology, 2015, 6, 174-182.	9.0	20
15	General Statistical Framework for Quantitative Proteomics by Stable Isotope Labeling. Journal of Proteome Research, 2014, 13, 1234-1247.	3.7	165
16	Targeting Hepatoma Using Nitric Oxide Donor Strategies. Antioxidants and Redox Signaling, 2013, 18, 491-506.	5.4	20
17	Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	4.0	13
18	Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues. International Journal of Proteomics, 2012, 2012, 1-9.	2.0	17

J Antonio BÃircena

#	Article	IF	CITATIONS
19	Nitrogen starvation induces extensive changes in the redox proteome of <i>Prochlorococcus</i> sp. strain SS120. Environmental Microbiology Reports, 2012, 4, 257-267.	2.4	25
20	Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3). Journal of Proteomics, 2011, 74, 2487-2497.	2.4	7
21	Biosynthetic and Iron Metabolism Is Regulated by Thiol Proteome Changes Dependent on Glutaredoxin-2 and Mitochondrial Peroxiredoxin-1 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 15565-15576.	3.4	13
22	Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 839-845.	2.3	14
23	A surface protein of Streptococcus suis serotype 2 identified by proteomics protects mice against infection. Journal of Proteomics, 2010, 73, 2365-2369.	2.4	28
24	Selection of thiol- and disulfide-containing proteins of Escherichia coli on activated thiol-Sepharose. Analytical Biochemistry, 2010, 398, 245-253.	2.4	26
25	Glutaredoxin Participates in the Reduction of Peroxides by the Mitochondrial 1-CYS Peroxiredoxin in <i>Saccharomyces cerevisiae</i> . Antioxidants and Redox Signaling, 2010, 13, 249-258.	5.4	44
26	Redox proteomics. Expert Review of Proteomics, 2010, 7, 1-4.	3.0	40
27	Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. Journal of Proteomics, 2009, 72, 677-689.	2.4	70
28	Structural Aspects of the Distinct Biochemical Properties of Glutaredoxin 1 and Glutaredoxin 2 from Saccharomyces cerevisiae. Journal of Molecular Biology, 2009, 385, 889-901.	4.2	79
29	Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinylâ€based redox modification of the 20S proteasome. FEBS Journal, 2008, 275, 2942-2955.	4.7	40
30	Changes in the Proteome of Functional and Regressing Corpus Luteum During Pregnancy and Lactation in the Rat1. Biology of Reproduction, 2008, 79, 100-114.	2.7	19
31	Redoxin Connection of Lipoic Acid. Oxidative Stress and Disease, 2008, , .	0.3	0
32	OUT OF CÓRDOBA. Proteomics, 2006, 6, S1-S3.	2.2	2
33	One Single In-frame AUG Codon Is Responsible for a Diversity of Subcellular Localizations of Glutaredoxin 2 in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2006, 281, 16551-16562.	3.4	50
34	Crystallization and preliminary X-ray crystallographic studies of glutaredoxin 2 fromSaccharomyces cerevisiaein different oxidation states. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 445-447.	0.7	4
35	Expression of glutaredoxin (thioltransferase) in the rat ovary during the oestrous cycle and postnatal development. Journal of Molecular Endocrinology, 2005, 34, 625-635.	2.5	7
36	Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochemical Journal, 2002, 364, 617-623.	3.7	61

J Antonio BÃircena

#	Article	IF	CITATIONS
37	Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochemical and Biophysical Research Communications, 2002, 295, 1046-1051.	2.1	52
38	Redox regulation of câ€Jun DNA binding by reversible Sâ€glutathiolation. FASEB Journal, 1999, 13, 1481-1490.	0.5	270
39	Immunolocalization of glutaredoxin in the human corpus luteum. Molecular Human Reproduction, 1999, 5, 914-919.	2.8	15
40	Purification and characterization of multiple glutathione transferase isoenzymes from grey mullet liver. Cellular and Molecular Life Sciences, 1997, 53, 759-768.	5.4	14
41	Purification from Placenta, Amino Acid Sequence, Structure Comparisons and cDNA Cloning of Human Glutaredoxin. FEBS Journal, 1995, 227, 27-34.	0.2	71
42	Horse-liver glutathione reductase: Purification and characterization. International Journal of Biochemistry & Cell Biology, 1993, 25, 61-68.	0.5	17
43	Topological relationships between porcine anterior pituitary hormones and the thioredoxin and glutaredoxin systems. Tissue and Cell, 1993, 25, 937-946.	2.2	2
44	Purification and properties of bovine thioredoxin system. Biochimie, 1993, 75, 803-809.	2.6	44
45	Immunolocalization of thioredoxin and glutaredoxin in mammalian hypophysis. Molecular and Cellular Endocrinology, 1992, 85, 1-12.	3.2	18
46	NADPH and oxidized thioredoxin mediate redox interconversion of calf-liver and Escherichia coli thioredoxin reductase. Molecular and Cellular Biochemistry, 1992, 109, 61-9.	3.1	8
47	Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis. Biomedical Applications, 1992, 581, 49-56.	1.7	50
48	HPLC ISOENZYME PATTERNS OF GLUTATHIONE TRANSFERASE FROM MARINE FISHES WITH DIFFERENT LEVELS OF POLLUTION. Biochemical Society Transactions, 1991, 19, 302S-302S.	3.4	8
49	Flavin-Mediated Photoreduction of Nitrate by Nitrate Reductase from Azotobacter chroococcum. Zeitschrift FÃ1⁄4r Pflanzenphysiologie, 1980, 98, 271-276.	1.4	2
50	Nitrate reductase from Azotobacter chroococcum. Inactivation by oxidizing agents and reactivation with dithioerythritol. Biochemical and Biophysical Research Communications, 1978, 84, 943-949.	2.1	4
51	Characterization of a membrane-bound nitrate reductase from Azotobacter chroococcum. Biochemical and Biophysical Research Communications, 1977, 75, 682-688.	2.1	6