
P Nowicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Convective and Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food and Bioprocess Technology, 2014, 7, 829-841.	2.6	303
2	Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods, 2017, 30, 194-202.	1.6	115
3	Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 2016, 25, 421-432.	1.6	102
4	Evaluation of Sour Cherry (<i>Prunus cerasus</i> L.) Fruits for Their Polyphenol Content, Antioxidant Properties, and Nutritional Components. Journal of Agricultural and Food Chemistry, 2014, 62, 12332-12345.	2.4	100
5	Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 2018, 48, 632-642.	1.6	86
6	Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 2016, 25, 397-407.	1.6	67
7	Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. International Journal of Molecular Sciences, 2015, 16, 14540-14553.	1.8	66
8	Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants, 2019, 8, 618.	2.2	66
9	Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chemistry, 2020, 332, 127382.	4.2	63
10	Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In vitro Bioactive Properties. Molecules, 2020, 25, 4648.	1.7	60
11	Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants, 2019, 8, 308.	2.2	55
12	Identification and quantification of major derivatives of ellagic acid and antioxidant properties of thinning and ripe Spanish pomegranates. Journal of Functional Foods, 2015, 12, 354-364.	1.6	53
13	Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species. Molecules, 2015, 20, 4951-4966.	1.7	52
14	Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 2017, 226, 179-186.	4.2	50
15	Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chemistry, 2019, 271, 216-223.	4.2	50
16	Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits. Food and Bioprocess Technology, 2015, 8, 824-836.	2.6	48
17	Principal component analysis (PCA) of physicochemical compounds' content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. European Food Research and Technology, 2019, 245, 929-938.	1.6	43
18	UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry, 2020, 309, 125766.	4.2	42

Ρ Νοωιςκά

#	Article	IF	CITATIONS
19	Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L Molecules, 2019, 24, 1222.	1.7	41
20	Inhibitory Potential against Digestive Enzymes Linked to Obesity and Type 2 Diabetes and Content of Bioactive Compounds in 20 Cultivars of the Peach Fruit Grown in Poland. Plant Foods for Human Nutrition, 2018, 73, 314-320.	1.4	38
21	Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants, 2019, 8, 539.	1.6	36
22	Influence of Different Drying Techniques on Phenolic Compounds, Antioxidant Capacity and Colour of Ziziphus jujube Mill. Fruits. Molecules, 2019, 24, 2361.	1.7	35
23	Anti-diabetic, anti-cholinesterase, and antioxidant potential, chemical composition and sensory evaluation of novel sea buckthorn-based smoothies. Food Chemistry, 2021, 338, 128105.	4.2	35
24	Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree. Food Chemistry, 2016, 196, 925-934.	4.2	34
25	Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chemistry, 2018, 239, 94-101.	4.2	34
26	Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. European Food Research and Technology, 2019, 245, 1123-1136.	1.6	33
27	Chemical Composition, Antioxidant Capacity, and Sensory Quality of Dried Sour Cherry Fruits pre-Dehydrated in Fruit Concentrates. Food and Bioprocess Technology, 2015, 8, 2076-2095.	2.6	31
28	Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Scientific Reports, 2021, 11, 20253.	1.6	31
29	Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. Journal of Functional Foods, 2019, 56, 353-363.	1.6	29
30	The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT - Food Science and Technology, 2018, 91, 588-594.	2.5	28
31	Effect of cultivar and storage temperature on identification and stability of polyphenols in strawberry cloudy juices. Journal of Food Composition and Analysis, 2016, 54, 10-19.	1.9	26
32	Influence of different drying methods on the quality of Japanese quince fruit. LWT - Food Science and Technology, 2019, 114, 108416.	2.5	26
33	Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 2020, 25, 3801.	1.7	25
34	The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 2020, 323, 126830.	4.2	25
35	ABTS On-Line Antioxidant, α-Amylase, α-Clucosidase, Pancreatic Lipase, Acetyl- and Butyrylcholinesterase Inhibition Activity of Chaenomeles Fruits Determined by Polyphenols and other Chemical Compounds. Antioxidants, 2020, 9, 60.	2.2	24
36	Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT - Food Science and Technology, 2016, 71, 102-109.	2.5	23

Ρ Νοωιςκά

#	Article	IF	CITATIONS
37	The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules, 2017, 22, 2246.	1.7	22
38	Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods, 2021, 10, 808.	1.9	22
39	Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. Journal of Food Composition and Analysis, 2020, 93, 103608.	1.9	20
40	Osmotic Dehydration as a Pretreatment Modulating the Physicochemical and Biological Properties of the Japanese Quince Fruit Dried by the Convective and Vacuum-Microwave Method. Food and Bioprocess Technology, 2020, 13, 1801-1816.	2.6	19
41	Fruit tree leaves as unconventional and valuable source of chlorophyll and carotenoid compounds determined by liquid chromatography-photodiode-quadrupole/time of flight-electrospray ionization-mass spectrometry (LC-PDA-qTof-ESI-MS). Food Chemistry, 2021, 349, 129156.	4.2	19
42	Analysis of chemical compounds' content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. European Food Research and Technology, 2021, 247, 3053-3062.	1.6	18
43	Profiling of polyphenols by LC-QTOF/ESI-MS, characteristics of nutritional compounds and in vitro effect on pancreatic lipase, α-glucosidase, α-amylase, cholinesterase and cyclooxygenase activities of sweet (Prunus avium) and sour (P. cerasus) cherries leaves and fruits. Industrial Crops and Products, 2021, 174, 114214.	2.5	18
44	The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples. Drying Technology, 2021, 39, 1074-1086.	1.7	17
45	Phytochemical composition of smoothies combining pomegranate juice (<i>Punica granatum</i> L) and Mediterranean minor crop purées (<i>Ficus carica</i> , <i>Cydonia oblonga</i> , and <i>Ziziphus) Tj ETQq1 1</i>	0.784#314	rgB T &Overlock
46	Profile of Phenolic Compounds of Prunus armeniaca L. Leaf Extract Determined by LC-ESI-QTOF-MS/MS and Their Antioxidant, Anti-Diabetic, Anti-Cholinesterase, and Anti-Inflammatory Potency. Antioxidants, 2021, 10, 1869.	2.2	16
47	Degradation Kinetics of Anthocyanins in Sour Cherry Cloudy Juices at Different Storage Temperature. Processes, 2019, 7, 367.	1.3	15
48	Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants, 2020, 9, 78.	1.6	15
49	Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules, 2020, 25, 5521.	1.7	13
50	Bioactive compounds and sensory attributes of sour cherry puree sweetened with natural sweeteners. International Journal of Food Science and Technology, 2015, 50, 585-591.	1.3	12
51	Formulation and storage effects on pomegranate smoothie phenolic composition, antioxidant capacity and color. LWT - Food Science and Technology, 2018, 96, 322-328.	2.5	11
52	Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. Journal of the Science of Food and Agriculture, 2022, 102, 185-197.	1.7	10
53	Effect of Inoculated Lactic Acid Fermentation on the Fermentable Saccharides and Polyols, Polyphenols and Antioxidant Activity Changes in Wheat Sourdough. Molecules, 2021, 26, 4193.	1.7	10
54	Effect of mixing different kinds of fruit juice with sour cherry puree on nutritional properties. Journal of Food Science and Technology, 2017, 54, 114-129.	1.4	9

Ρ Νοωιςκά

#	Article	IF	CITATIONS
55	Changes of peach juices during the shelfâ€life and their inÂvitro effect on glycolipid digestion and neurotransmitter metabolism. International Journal of Food Science and Technology, 2019, 54, 1865-1873.	1.3	9
56	UPLC/ESI-Q-TOF-MS analysis of (poly)phenols, tocols and amino acids in Chaenomeles leaves versus in vitro anti-enzyme activities. Industrial Crops and Products, 2022, 181, 114829.	2.5	9
57	Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules, 2021, 26, 7593.	1.7	9
58	Incorporation of bioflavonoids from Bidens tripartite into micelles of non-ionic surfactants – experimental and theoretical studies. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110553.	2.5	8
59	Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. LWT - Food Science and Technology, 2021, 152, 112247.	2.5	8
60	The Types of Polysaccharide Coatings and Their Mixtures as a Factor Affecting the Stability of Bioactive Compounds and Health-Promoting Properties Expressed as the Ability to Inhibit the α-Amylase and α-Glucosidase of Chokeberry Extracts in the Microencapsulation Process. Foods, 2021, 10, 1994.	1.9	7
61	MICROBIOLOGICAL HAZARDS IN MINIMALLY PROCESSED FOODS AND EFFECTIVE METHODS TO ELIMINATE THEM. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, 20, .	0.1	7
62	Application of Polyethylene/Polypropylene Glycol Ethers of Fatty Alcohols for Micelleâ€Mediated Extraction of Calendula anthodium. Journal of Surfactants and Detergents, 2019, 22, 655-661.	1.0	6
63	Inhibition of enzymes associated with metabolic and neurological disorder by dried pomegranate sheets as a function of pomegranate cultivar and fruit puree. Journal of the Science of Food and Agriculture, 2021, 101, 2294-2303.	1.7	6
64	Effect of the Addition of Polysaccharide Hydrocolloids on Sensory Quality, Color Parameters, and Anthocyanin Stabilization in Cloudy Strawberry Beverages. M. Teleszko, P. Nowicka, A. WojdyÅ,o. Polish Journal of Food and Nutrition Sciences, 2019, 69, 167-178.	0.6	5
65	Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants, 2022, 11, 190.	2.2	5
66	The Effect of Filtration on Physical and Chemical Properties of Osmo-Dehydrated Material. Molecules, 2020, 25, 5412.	1.7	4
67	Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules, 2021, 26, 2644.	1.7	4
68	ASSESSMENT OF SENSORY QUALITIES AND NUTRITIONAL VALUE OF CHOKEBERRY PUREE WITH ADDED FLAX POMACE AND DRIED LEAVES OF STEVIA. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, , .	0.1	1