Fumihito Saitow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5089016/publications.pdf

Version: 2024-02-01

41 papers

1,142 citations

³⁹⁴²⁸⁶
19
h-index

395590 33 g-index

41 all docs

41 docs citations

41 times ranked

1440 citing authors

#	Article	IF	CITATIONS
1	miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain, 2013, 136, 2738-2750.	3.7	124
2	Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nature Neuroscience, 2000, 3, 551-558.	7.1	119
3	MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nature Communications, 2017, 8, 16079.	5.8	90
4	Serotonin rebalances cortical tuning and behavior linked to autism symptoms in $15q11-13$ CNV mice. Science Advances, 2017 , 3 , $e1603001$.	4.7	64
5	GABAB receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala. Neuropharmacology, 1999, 38, 1743-1753.	2.0	63
6	î²-Adrenergic Receptor-Mediated Presynaptic Facilitation of Inhibitory GABAergic Transmission at Cerebellar Interneuron-Purkinje Cell Synapses. Journal of Neurophysiology, 2000, 84, 2016-2025.	0.9	62
7	Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Frontiers in Behavioral Neuroscience, 2015, 9, 78.	1.0	59
8	Excitability Increase Induced by \hat{I}^2 -Adrenergic Receptor-Mediated Activation of Hyperpolarization-Activated Cation Channels in Rat Cerebellar Basket Cells. Journal of Neurophysiology, 2000, 84, 2026-2034.	0.9	53
9	AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms. European Journal of Neuroscience, 2004, 19, 2464-2474.	1.2	51
10	Metabotropic P2Y Purinoceptor-Mediated Presynaptic and Postsynaptic Enhancement of Cerebellar GABAergic Transmission. Journal of Neuroscience, 2005, 25, 2108-2116.	1.7	44
11	Modulation of Presynaptic Ca2+ Entry by AMPA Receptors at Individual GABAergic Synapses in the Cerebellum. Journal of Neuroscience, 2005, 25, 4930-4940.	1.7	43
12	Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. Journal of Physiological Sciences, 2013, 63, 147-154.	0.9	39
13	Cerebellar Globular Cells Receive Monoaminergic Excitation and Monosynaptic Inhibition from Purkinje Cells. PLoS ONE, 2012, 7, e29663.	1.1	37
14	Modulatory Effects of Serotonin on GABAergic Synaptic Transmission and Membrane Properties in the Deep Cerebellar Nuclei. Journal of Neurophysiology, 2009, 101, 1361-1374.	0.9	34
15	Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Molecular Psychiatry, 2018, 23, 2039-2049.	4.1	33
16	Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice. Molecular and Cellular Biology, 2015, 35, 1557-1572.	1.1	32
17	Î ² -Adrenoceptor-mediated long-term up-regulation of the release machinery at rat cerebellar GABAergic synapses. Journal of Physiology, 2005, 565, 487-502.	1.3	28
18	Distribution and pharmacological characterization of primate NK-1 and NK-3 tachykinin receptors in the central nervous system of the rhesus monkey. British Journal of Pharmacology, 2006, 147, 316-323.	2.7	28

#	Article	IF	Citations
19	Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience, 2011, 172, 118-128.	1.1	25
20	The Photodynamic Action of Methylene Blue on the Ion Channels of Paramecium Causes Cell Damage. Photochemistry and Photobiology, 1997, 65, 902-907.	1.3	14
21	Change in serotonergic modulation contributes to the synaptic imbalance of neuronal circuit at the prefrontal cortex in the $15q11-13$ duplication mouse model of autism. Neuropharmacology, 2020, 165, 107931 .	2.0	13
22	A calcium-activated, large conductance and non-selective cation channel in Paramecium cell. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1327, 52-60.	1.4	11
23	Depolarization-induced depression of inhibitory transmission in cerebellar Purkinje cells. Physiological Reports, 2013, 1, e00061.	0.7	10
24	Photodynamic Action of Methylene Blue on the Paramecium Membrane. Photochemistry and Photobiology, 1996, 63, 868-873.	1.3	9
25	Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABAA Receptor Composition in the Cerebellar Nuclei. Cerebellum, 2018, 17, 346-358.	1.4	9
26	Presynaptic dysfunction caused by cerebrospinal fluid from a patient with the ataxic form of Hashimoto's encephalopathy. Neurology and Clinical Neuroscience, 2014, 2, 104-108.	0.2	8
27	Downregulation of Dopamine D1-like Receptor Pathways of GABAergic Interneurons in the Anterior Cingulate Cortex of Spontaneously Hypertensive Rats. Neuroscience, 2018, 394, 267-285.	1.1	8
28	Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nature Communications, 2021, 12, 4056.	5.8	8
29	Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study. PLoS ONE, 2016, 11, e0150636.	1.1	6
30	Upregulated 5-HT1A receptor-mediated currents in the prefrontal cortex layer 5 neurons in the 15q11–13 duplication mouse model of autism. Molecular Brain, 2020, 13, 115.	1.3	5
31	Cesarean section delivery is a risk factor of autism-related behaviors in mice. Scientific Reports, 2021, 11, 8883.	1.6	5
32	Reversible differentiation of immortalized human bladder smooth muscle cells accompanied by actin bundle reorganization. PLoS ONE, 2017, 12, e0186584.	1.1	5
33	Serotonin and Synaptic Transmission in the Cerebellum. , 2013, , 915-926.		2
34	Mitochondrial dysfunction causes hyperexcitability of serotonergic neurons. Molecular Psychiatry, 2018, 23, 1971-1971.	4.1	1
35	1P-200 Monoaminergic cross-talk action at the mossy fiber-deep cerebellar nuclei synapses(Biol & Artifi) Tj ETQq1 Butsuri, 2009, 49, S93-S94.	1 0.78431 o.o	14 rgBT /Ov O
36	GABAergic Synaptic Transmission in the Cerebellar Cortex. Nihon Ika Daigaku Igakkai Zasshi, 2007, 3, 56-57.	0.0	0

#	Article	IF	CITATIONS
37	Modulation of Cerebellar GABAergic Synaptic Transmission. Nihon Ika Daigaku Igakkai Zasshi, 2009, 5, 152-158.	0.0	O
38	Roles of 5-HT_{1A} receptor in pathophysiological state of neuronal circuit at the prefrontal cortex in $15q11-13$ duplication autism model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-78.	0.0	0
39	Role of miR-17-92 in the functional changes of primary sensory neurons following nerve injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-2-20.	0.0	0
40	Serotonin and Synaptic Transmission in the Cerebellum. , 2019, , 1-14.		0
41	Serotonin and Synaptic Transmission in the Cerebellum. , 2022, , 991-1004.		0