
## Bablu Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088896/publications.pdf Version: 2024-02-01



0

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | ReS <sub>2</sub> /hâ€BN/Graphene Heterostructure Based Multifunctional Devices: Tunneling Diodes,<br>FETs, Logic Gates, and Memory. Advanced Electronic Materials, 2021, 7, .                                        | 5.1  | 15        |
| 2  | Enhanced Selectivity in Volatile Organic Compound Gas Sensors Based on ReS <sub>2</sub> -FETs under<br>Light-Assisted and Gate-Bias Tunable Operation. ACS Applied Materials & Interfaces, 2021, 13,<br>43030-43038. | 8.0  | 18        |
| 3  | Gate-bias tunable humidity sensors based on rhenium disulfide field-effect transistors. Japanese<br>Journal of Applied Physics, 2021, 60, SBBH01.                                                                    | 1.5  | 5         |
| 4  | Reaction Mechanism and Selectivity Control of Si Compound ALE Based on Plasma Modification and F-Radical Exposure. Langmuir, 2021, 37, 12663-12672.                                                                  | 3.5  | 5         |
| 5  | Laserâ€Assisted Multilevel Nonâ€Volatile Memory Device Based on 2D vanâ€derâ€Waals<br>Fewâ€Layerâ€ReS <sub>2</sub> /hâ€BN/Graphene Heterostructures. Advanced Functional Materials, 2020, 30,<br>2001688.            | 14.9 | 52        |
| 6  | Lightâ€Assisted and Gateâ€Tunable Oxygen Gas Sensor Based on Rhenium Disulfide Fieldâ€Effect Transistors.<br>Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000330.                                      | 2.4  | 7         |
| 7  | Enhanced Quantum Efficiency in Vertical Mixed-Thickness <i>n</i> -ReS <sub>2</sub> / <i>p</i> -Si<br>Heterojunction Photodiodes. ACS Photonics, 2019, 6, 2277-2286.                                                  | 6.6  | 26        |
| 8  | Physics and Modeling of Two-dimensional (2D) RF Transistors and Photodetectors. , 2019, , .                                                                                                                          |      | 0         |
| 9  | Plasmonic Enhancement in Anisotropic Thin Films of Rhenium Disulphide (ReS <sub>2</sub> ). , 2018, , .                                                                                                               |      | 0         |
| 10 | Multilayer ReS <sub>2</sub> Photodetectors with Gate Tunability for High Responsivity and<br>High-Speed Applications. ACS Applied Materials & Interfaces, 2018, 10, 36512-36522.                                     | 8.0  | 86        |
| 11 | Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling. Scientific<br>Reports, 2017, 7, 41175.                                                                                              | 3.3  | 50        |
| 12 | Reversible hysteresis inversion in MoS2 field effect transistors. Npj 2D Materials and Applications, 2017, 1, .                                                                                                      | 7.9  | 112       |
| 13 | Suspended ReS2FET for improved photocurrent-time response. , 2017, , .                                                                                                                                               |      | 3         |
| 14 | Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors. Nanoscale, 2016, 8, 14203-14212.                                                                  | 5.6  | 32        |
| 15 | Light-matter interactions in complex media with 2D materials, metamaterials, and quantum dots. , 2016,                                                                                                               |      | 0         |
| 16 | Enhanced absorption with quantum dots, metal nanoparticles, and 2D materials. Proceedings of SPIE, 2016, , .                                                                                                         | 0.8  | 0         |
| 17 | Photoconductivity of interconnected nanowires and their electromagnetic-circuit co-simulation. , 2016, , .                                                                                                           |      | 0         |
|    |                                                                                                                                                                                                                      |      |           |

18 Keeping 2D materials visible even buried in Sol wafers. , 2016, , .

BABLU MUKHERJEE

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers.<br>Optics Communications, 2016, 369, 89-93.                                | 2.1 | 32        |
| 20 | Plasmonics Enhanced Average Broadband Absorption of Monolayer MoS2. Plasmonics, 2016, 11, 285-289.                                                                           | 3.4 | 21        |
| 21 | Photoconductivity in VO <sub>2</sub> –ZnO Inter-Nanowire Junction and Nanonetwork Device.<br>Nanoscience and Nanotechnology Letters, 2016, 8, 492-497.                       | 0.4 | 1         |
| 22 | Visibility of atomically-thin layered materials buried in silicon dioxide. Nanotechnology, 2015, 26, 455701.                                                                 | 2.6 | 7         |
| 23 | Plasmonics enhanced average broadband absorption of monolayer MoS2. , 2015, , .                                                                                              |     | 1         |
| 24 | Raman analysis of gold on WSe <sub>2</sub> single crystal film. Materials Research Express, 2015, 2,<br>065009.                                                              | 1.6 | 20        |
| 25 | Complex electrical permittivity of the monolayer molybdenum disulfide (MoS_2) in near UV and visible. Optical Materials Express, 2015, 5, 447.                               | 3.0 | 104       |
| 26 | Absorptance Of PbS Quantum Dots Thin Film Deposited On Trilayer MoS2. Advanced Materials Letters, 2015, 6, 936-940.                                                          | 0.6 | 4         |
| 27 | Direct laser micropatterning of GeSe2 nanostructures film with controlled optoelectrical properties. RSC Advances, 2014, 4, 10013.                                           | 3.6 | 11        |
| 28 | K-Enriched WO <sub>3</sub> Nanobundles: High Electrical Conductivity and Photocurrent with Controlled Polarity. ACS Applied Materials & amp; Interfaces, 2013, 5, 4731-4738. | 8.0 | 20        |
| 29 | NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet. ACS Applied<br>Materials & Interfaces, 2013, 5, 9594-9604.                                | 8.0 | 214       |
| 30 | Photocurrent characteristics of individual GeSe2 nanobelt with Schottky effects. Journal of Applied Physics, 2013, 114, .                                                    | 2.5 | 22        |
| 31 | Stepped-surfaced GeSe2 nanobelts with high-gain photoconductivity. Journal of Materials Chemistry, 2012, 22, 24882.                                                          | 6.7 | 26        |
| 32 | Synthesis, characterization and electrical properties of hybrid Zn2GeO4–ZnO beaded nanowire<br>arrays. Journal of Crystal Growth, 2012, 346, 32-39.                          | 1.5 | 10        |
| 33 | Electrical and photoresponse properties of Co3O4 nanowires. Journal of Applied Physics, 2012, 111, .                                                                         | 2.5 | 41        |