
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088883/publications.pdf Version: 2024-02-01

RONALD & DEDINHO

#	Article	IF	CITATIONS
1	Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. Cell, 1997, 91, 25-34.	13.5	1,988
2	Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell, 2012, 149, 656-670.	13.5	1,587
3	Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496, 101-105.	13.7	1,562
4	The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 1999, 397, 164-168.	13.7	1,442
5	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
6	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2006, 20, 1218-1249.	2.7	1,118
7	Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470, 359-365.	13.7	1,093
8	Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 2000, 406, 641-645.	13.7	1,016
9	Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632.	13.7	998
10	p53 Deficiency Rescues the Adverse Effects of Telomere Loss and Cooperates with Telomere Dysfunction to Accelerate Carcinogenesis. Cell, 1999, 97, 527-538.	13.5	926
11	Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes and Development, 2003, 17, 3112-3126.	2.7	912
12	The age of cancer. Nature, 2000, 408, 248-254.	13.7	894
13	Essential role for oncogenic Ras in tumour maintenance. Nature, 1999, 400, 468-472.	13.7	855
14	Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 2011, 469, 102-106.	13.7	674
15	Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 2010, 464, 520-528.	13.7	630
16	An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 2018, 24, 1036-1046.	15.2	622
17	Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes and Development, 2006, 20, 3130-3146.	2.7	562
18	Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer. Cell, 2014, 158, 185-197.	13.5	553

#	Article	IF	CITATIONS
19	Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5947-5952.	3.3	537
20	Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nature Communications, 2015, 6, 6670.	5.8	522
21	Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genetics, 2001, 28, 155-159.	9.4	490
22	SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature, 2011, 470, 269-273.	13.7	462
23	Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genetics, 2004, 36, 877-882.	9.4	436
24	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434
25	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2016, 30, 355-385.	2.7	416
26	Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discovery, 2016, 6, 80-95.	7.7	404
27	Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature, 2017, 543, 728-732.	13.7	403
28	Inhibition of Experimental Liver Cirrhosis in Mice by Telomerase Gene Delivery. Science, 2000, 287, 1253-1258.	6.0	385
29	DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nature Cell Biology, 2001, 3, 1-7.	4.6	377
30	Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene, 1999, 18, 1219-1226.	2.6	368
31	Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature, 2003, 421, 643-648.	13.7	365
32	KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell, 2019, 35, 559-572.e7.	7.7	353
33	Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nature Genetics, 2000, 26, 85-88.	9.4	297
34	Stromal biology of pancreatic cancer. Journal of Cellular Biochemistry, 2007, 101, 887-907.	1.2	290
35	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
36	Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell, 2005, 8, 185-195.	7.7	263

#	Article	IF	CITATIONS
37	Telomeres: history, health, and hallmarks of aging. Cell, 2021, 184, 306-322.	13.5	248
38	Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature, 2017, 542, 119-123.	13.7	209
39	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	13.5	207
40	Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell, 2019, 35, 868-884.e6.	7.7	202
41	Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metabolism, 2013, 17, 901-915.	7.2	198
42	Telomerase Reactivation following Telomere Dysfunction Yields Murine Prostate Tumors with Bone Metastases. Cell, 2012, 148, 896-907.	13.5	191
43	Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature, 2017, 542, 484-488.	13.7	173
44	Genetic and biological hallmarks of colorectal cancer. Genes and Development, 2021, 35, 787-820.	2.7	159
45	Compression of Pancreatic Tumor Blood Vessels by Hyaluronan Is Caused by Solid Stress and Not Interstitial Fluid Pressure. Cancer Cell, 2014, 26, 14-15.	7.7	155
46	Metabolic Codependencies in the Tumor Microenvironment. Cancer Discovery, 2021, 11, 1067-1081.	7.7	144
47	Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms. Molecular and Cellular Biology, 2008, 28, 2414-2425.	1.1	137
48	Oncogenic <i>Kras</i> drives invasion and maintains metastases in colorectal cancer. Genes and Development, 2017, 31, 370-382.	2.7	137
49	Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature, 2019, 568, 410-414.	13.7	129
50	Cancer Stemness Meets Immunity: From Mechanism to Therapy. Cell Reports, 2021, 34, 108597.	2.9	128
51	Gene-target recognition among members of the Myc superfamily and implications for oncogenesis. Nature Genetics, 2000, 24, 113-119.	9.4	125
52	Mice without telomerase: what can they teach us about human cancer?. Nature Medicine, 2000, 6, 852-855.	15.2	122
53	Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment. Cancer Discovery, 2020, 10, 608-625.	7.7	119
54	Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell, 2022, 40, 153-167.e11.	7.7	118

#	Article	IF	CITATIONS
55	ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell, 2017, 32, 88-100.e6.	7.7	114
56	Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes and Development, 2014, 28, 1429-1444.	2.7	111
57	FoxO Function Is Essential for Maintenance of Autophagic Flux and Neuronal Morphogenesis in Adult Neurogenesis. Neuron, 2018, 99, 1188-1203.e6.	3.8	107
58	Collateral Lethality: A New Therapeutic Strategy in Oncology. Trends in Cancer, 2015, 1, 161-173.	3.8	106
59	Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.	13.7	105
60	Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia into the GBM Tumor Microenvironment. Cancer Discovery, 2020, 10, 371-381.	7.7	102
61	Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nature Cell Biology, 2020, 22, 282-288.	4.6	96
62	SF2312 is a natural phosphonate inhibitor of enolase. Nature Chemical Biology, 2016, 12, 1053-1058.	3.9	90
63	Tumor Microenvironment Remodeling Enables Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1058-1077.	7.7	87
64	Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome. Cancer Cell, 2015, 27, 644-657.	7.7	85
65	FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Molecular Medicine, 2018, 10, 276-293.	3.3	85
66	Genetic Events That Limit the Efficacy of MEK and RTK Inhibitor Therapies in a Mouse Model of KRAS-Driven Pancreatic Cancer. Cancer Research, 2015, 75, 1091-1101.	0.4	68
67	USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes and Development, 2019, 33, 1361-1366.	2.7	65
68	Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochemical Journal, 1998, 336, 551-560.	1.7	64
69	Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Deficient Prostate Cancer. Cancer Discovery, 2020, 10, 1374-1387.	7.7	60
70	STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers. Clinical Cancer Research, 2018, 24, 5948-5962.	3.2	59
71	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	0.6	59
72	Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. Journal of Experimental Medicine, 2022, 219, .	4.2	53

#	Article	IF	CITATIONS
73	ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Science Immunology, 2022, 7, .	5.6	52
74	Loss of FOXO1 Cooperates with TMPRSS2–ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion. Cancer Research, 2017, 77, 6524-6537.	0.4	51
75	An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nature Metabolism, 2020, 2, 1413-1426.	5.1	49
76	Functional Genomics Reveals Synthetic Lethality between Phosphogluconate Dehydrogenase and Oxidative Phosphorylation. Cell Reports, 2019, 26, 469-482.e5.	2.9	47
77	Effective combinatorial immunotherapy for penile squamous cell carcinoma. Nature Communications, 2020, 11, 2124.	5.8	45
78	SUMOylation of ROR-Î ³ t inhibits IL-17 expression and inflammation via HDAC2. Nature Communications, 2018, 9, 4515.	5.8	42
79	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11, 4766.	5.8	42
80	PAF promotes stemness and radioresistance of glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9086-E9095.	3.3	40
81	Single-cell RNA sequencing in pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 451-452.	8.2	40
82	FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nature Communications, 2016, 7, 12733.	5.8	34
83	Opposing roles of TGFÎ ² and BMP signaling in prostate cancer development. Genes and Development, 2017, 31, 2337-2342.	2.7	30
84	Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
85	MAPRE1 as a Plasma Biomarker for Early-Stage Colorectal Cancer and Adenomas. Cancer Prevention Research, 2015, 8, 1112-1119.	0.7	25
86	Telomerase reverse transcriptase preserves neuron survival and cognition in Alzheimer's disease models. Nature Aging, 2021, 1, 1162-1174.	5.3	24
87	Synthetic essentiality: Targeting tumor suppressor deficiencies in cancer. BioEssays, 2017, 39, 1700076.	1.2	22
88	The age of cancer: telomeres, checkpoints, and longevity. Journal of Clinical Investigation, 2003, 111, S9-14.	3.9	22
89	USP21 deubiquitinase elevates macropinocytosis to enable oncogenic KRAS bypass in pancreatic cancer. Genes and Development, 2021, 35, 1327-1332.	2.7	18
90	Differential effects of the widely expressed dMax splice variant of Max on E-box vs initiator element-mediated regulation by c-Myc. Oncogene, 1999, 18, 2489-2498.	2.6	17

#	Article	IF	CITATIONS
91	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	1.0	17
92	An <i>In Vivo</i> Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Research, 2018, 78, 3823-3833.	0.4	16
93	FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1470-H1485.	1.5	15
94	Synthetic Essentiality of Tryptophan 2,3-Dioxygenase 2 in <i>APC</i> -Mutated Colorectal Cancer. Cancer Discovery, 2022, 12, 1702-1717.	7.7	15
95	Telomerase meets its mismatch. Nature, 2001, 411, 647-648.	13.7	10
96	Pyruvate Kinase M1 Suppresses Development and Progression of Prostate Adenocarcinoma. Cancer Research, 2022, 82, 2403-2416.	0.4	10
97	Cancer signaling: when phosphorylation meets methylation. Cell Research, 2014, 24, 1282-1283.	5.7	9
98	AR-negative prostate cancer is vulnerable to loss of JMJD1C demethylase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
99	FoxO1 regulates leptin-induced mood behavior by targeting tyrosine hydroxylase. Metabolism: Clinical and Experimental, 2019, 91, 43-52.	1.5	4
100	Targeted Overexpression of the Transcription Factor XBP-1 in B Cells Promotes Plasma Cell and Lymphoplasmacytic Neoplasms in Transgenic Mice Blood, 2005, 106, 359-359.	0.6	4
101	A tumor vessel-targeting fusion protein elicits a chemotherapeutic bystander effect in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2017, 7, 657-672.	1.4	3
102	Telomere Dysfunction-Induced DNA Damage Drives Hematopoietic Stem Cell Fate. Blood, 2015, 126, 1156-1156.	0.6	1
103	Upregulation of c-Jun Induces Cell Death Via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma Blood, 2006, 108, 3415-3415.	0.6	0
104	p16INK4a Is a Key Downstream Mediator of the Deleterious Effects of FoxO Deficiency on Maintenance of the Hematopoietic Stem Cell Compartment Blood, 2008, 112, 1405-1405.	0.6	0
105	ILF2-YB1 Protein Interaction Modulates RNA Splicing to Induce Resistance to Chemotherapy in High Risk Multiple Myeloma. Blood, 2016, 128, 359-359.	0.6	0
106	Telomere Dysfunction as an Initiator of Inflammation: Clues to an Age-Old Mystery. , 2021, 6, .		0