Maarten Naesens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088629/publications.pdf

Version: 2024-02-01

257 papers

11,761 citations

²⁶⁶³⁰
56
h-index

98 g-index

267 all docs

267 docs citations

times ranked

267

10342 citing authors

#	Article	IF	CITATIONS
1	Calcineurin Inhibitor Nephrotoxicity. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 481-508.	4.5	1,178
2	The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. American Journal of Transplantation, 2018, 18, 293-307.	4.7	813
3	The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and antibody-mediated rejection. American Journal of Transplantation, 2020, 20, 2318-2331.	4.7	437
4	A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. Journal of Experimental Medicine, 2013, 210, 2205-2221.	8.5	201
5	Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney International, 2018, 94, 964-973.	5.2	198
6	CYP3A5 and CYP3A4 but not MDR1 Single-nucleotide Polymorphisms Determine Long-term Tacrolimus Disposition and Drug-related Nephrotoxicity in Renal Recipients. Clinical Pharmacology and Therapeutics, 2007, 82, 711-725.	4.7	192
7	Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ: British Medical Journal, 2019, 366, l4923.	2.3	191
8	Multidrug Resistance Protein 2 Genetic Polymorphisms Influence Mycophenolic Acid Exposure in Renal Allograft Recipients. Transplantation, 2006, 82, 1074-1084.	1.0	187
9	Intrarenal Resistive Index after Renal Transplantation. New England Journal of Medicine, 2013, 369, 1797-1806.	27.0	185
10	A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Science Translational Medicine, 2014, 6, 256ra136.	12.4	172
11	The impact of uridine diphosphate–glucuronosyltransferase 1A9 () gene promoter region single-nucleotide polymorphisms and on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clinical Pharmacology and Therapeutics, 2005, 78, 351-361.	4.7	171
12	New Insights Into the Pharmacokinetics and Pharmacodynamics of the Calcineurin Inhibitors and Mycophenolic Acid: Possible Consequences for Therapeutic Drug Monitoring in Solid Organ Transplantation. Therapeutic Drug Monitoring, 2009, 31, 416-435.	2.0	146
13	Tertiary â€~Hyperphosphatoninism' Accentuates Hypophosphatemia and Suppresses Calcitriol Levels in Renal Transplant Recipients. American Journal of Transplantation, 2007, 7, 1193-1200.	4.7	143
14	Complete Steroid Avoidance Is Effective and Safe in Children With Renal Transplants: A Multicenter Randomized Trial With Three-Year Follow-Up. American Journal of Transplantation, 2012, 12, 2719-2729.	4.7	141
15	Thyroid function in patients with hyperemesis gravidarum. American Journal of Obstetrics and Gynecology, 1982, 143, 922-926.	1.3	138
16	Donor Age and Renal P-Glycoprotein Expression Associate with Chronic Histological Damage in Renal Allografts. Journal of the American Society of Nephrology: JASN, 2009, 20, 2468-2480.	6.1	126
17	Recovery of Hyperphosphatoninism and Renal Phosphorus Wasting One Year after Successful Renal Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 1829-1836.	4.5	124
18	A Peripheral Blood Diagnostic Test for Acute Rejection in Renal Transplantation. American Journal of Transplantation, 2012, 12, 2710-2718.	4.7	124

#	Article	IF	Citations
19	The Histology of Kidney Transplant Failure. Transplantation, 2014, 98, 427-435.	1.0	124
20	Expression of Complement Components Differs Between Kidney Allografts from Living and Deceased Donors. Journal of the American Society of Nephrology: JASN, 2009, 20, 1839-1851.	6.1	121
21	Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation–Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. American Journal of Transplantation, 2020, 20, 2305-2317.	4.7	119
22	Bartter's and Gitelman's Syndromes: From Gene to Clinic. Nephron Physiology, 2004, 96, p65-p78.	1.2	117
23	The P450 oxidoreductase <i>*28</i> SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics, 2011, 12, 1281-1291.	1.3	116
24	Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. American Journal of Kidney Diseases, 2015, 66, 699-709.	1.9	116
25	Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation. Kidney International, 2019, 95, 188-198.	5.2	116
26	The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney International, 2014, 85, 636-640.	5.2	106
27	Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Therapeutic Drug Monitoring, 2010, 32, 394-404.	2.0	103
28	Histological picture of antibody-mediated rejection without donor-specific anti-HLA antibodies: Clinical presentation and implications for outcome. American Journal of Transplantation, 2019, 19, 763-780.	4.7	102
29	Incidence, Characteristics, and Outcome of COVID-19 in Adults on Kidney Replacement Therapy: A Regionwide Registry Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 385-396.	6.1	101
30	Current target ranges of mycophenolic acid exposure and drug-related adverse events: A 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clinical Therapeutics, 2008, 30, 673-683.	2.5	100
31	Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nature Communications, 2019, 10, 5350.	12.8	100
32	Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome―measures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4148-4153.	7.1	98
33	Eplet Mismatch Load and De Novo Occurrence of Donor-Specific Anti-HLA Antibodies, Rejection, and Graft Failure after Kidney Transplantation: An Observational Cohort Study. Journal of the American Society of Nephrology: JASN, 2020, 31, 2193-2204.	6.1	98
34	Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. Kidney International, 2011, 80, 1364-1376.	5.2	96
35	Renal Clearance and Intestinal Generation of p-Cresyl Sulfate and Indoxyl Sulfate in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1508-1514.	4.5	93
36	Non-HLA Antibodies to Immunogenic Epitopes Predict the Evolution of Chronic Renal Allograft Injury. Journal of the American Society of Nephrology: JASN, 2012, 23, 750-763.	6.1	87

#	Article	IF	CITATIONS
37	Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nature Metabolism, 2020, 2, 732-743.	11.9	85
38	Steroid-Free Immunosuppression Since 1999: 129 Pediatric Renal Transplants with Sustained Graft and Patient Benefits. American Journal of Transplantation, 2009, 9, 1362-1372.	4.7	83
39	The Predictive Value of Kidney Allograft Baseline Biopsies for Long-Term Graft Survival. Journal of the American Society of Nephrology: JASN, 2013, 24, 1913-1923.	6.1	83
40	Tacrolimus Exposure and Evolution of Renal Allograft Histology in the First Year After Transplantation. American Journal of Transplantation, 2007, 7, 2114-2123.	4.7	82
41	Molecular diagnostics in transplantation. Nature Reviews Nephrology, 2010, 6, 614-628.	9.6	80
42	Transcriptional trajectories of human kidney injury progression. JCI Insight, 2018, 3, .	5.0	80
43	Can sonography diagnose acute colonic diverticulitis in patients with acute intestinal inflammation? A prospective study. Journal of Clinical Ultrasound, 1989, 17, 661-666.	0.8	79
44	Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: A multicentre, prospective study. EBioMedicine, 2019, 46, 463-472.	6.1	75
45	Precision Transplant Medicine: Biomarkers to the Rescue. Journal of the American Society of Nephrology: JASN, 2018, 29, 24-34.	6.1	74
46	Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients. Clinical Pharmacology and Therapeutics, 2006, 80, 509-521.	4.7	73
47	Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenetics and Genomics, 2008, 18, 861-868.	1.5	72
48	Calcium Metabolism in the Early Posttransplantation Period. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 665-672.	4.5	72
49	Drug interaction between mycophenolate mofetil and rifampin: Possible induction of uridine diphosphate-glucuronosyltransferase. Clinical Pharmacology and Therapeutics, 2005, 78, 81-88.	4.7	71
50	Establishing Biomarkers in Transplant Medicine. Transplantation, 2016, 100, 2024-2038.	1.0	71
51	Subclinical Peritubular Capillaritis at 3 Months Is Associated With Chronic Rejection at 1 Year. Transplantation, 2007, 83, 1416-1422.	1.0	70
52	The Evolution of Nonimmune Histological Injury and Its Clinical Relevance in Adult-Sized Kidney Grafts in Pediatric Recipients. American Journal of Transplantation, 2007, 7, 2505-2515.	4.7	69
53	A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. Journal of the American Society of Nephrology: JASN, 2019, 30, 1481-1494.	6.1	67
54	Specificity, strength, and evolution of pretransplant donor-specific HLA antibodies determine outcome after kidney transplantation. American Journal of Transplantation, 2019, 19, 3100-3113.	4.7	66

#	Article	IF	CITATIONS
55	Proteinuria as a Noninvasive Marker for Renal Allograft Histology and Failure. Journal of the American Society of Nephrology: JASN, 2016, 27, 281-292.	6.1	65
56	A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nature Communications, 2019, 10, 1157.	12.8	65
57	COVID-19-related mortality in kidney transplant and haemodialysis patients: a comparative, prospective registry-based study. Nephrology Dialysis Transplantation, 2021, 36, 2094-2105.	0.7	65
58	Allorecognition and the spectrum of kidney transplant rejection. Kidney International, 2022, 101, 692-710.	5.2	65
59	Bone mineral density, bone turnover markers, andÂincident fractures in de novo kidney transplantÂrecipients. Kidney International, 2019, 95, 1461-1470.	5.2	61
60	Design and Implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation, 2015, 99, 2401-2412.	1.0	60
61	Transcriptional Changes in Kidney Allografts with Histology of Antibody-Mediated Rejection without Anti-HLA Donor-Specific Antibodies. Journal of the American Society of Nephrology: JASN, 2020, 31, 2168-2183.	6.1	60
62	Pretransplant identification of acute rejection risk following kidney transplantation. Transplant International, 2014, 27, 129-138.	1.6	59
63	Chronic Histological Damage in Early Indication Biopsies Is an Independent Risk Factor for Late Renal Allograft Failure. American Journal of Transplantation, 2013, 13, 86-99.	4.7	56
64	The Clinical Impact of Humoral Immunity in Pediatric Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2013, 24, 655-664.	6.1	56
65	Missing Self-Induced Activation of NK Cells Combines with Non-Complement-Fixing Donor-Specific Antibodies to Accelerate Kidney Transplant Loss in Chronic Antibody-Mediated Rejection. Journal of the American Society of Nephrology: JASN, 2021, 32, 479-494.	6.1	56
66	Clinical importance of extended second field high-resolution HLA genotyping for kidney transplantation. American Journal of Transplantation, 2020, 20, 3367-3378.	4.7	54
67	The Impact of Renal Allograft Function on Exposure and Elimination of Mycophenolic Acid (MPA) and Its Metabolite MPA 7-O-glucuronide. Transplantation, 2007, 84, 362-373.	1.0	52
68	Soluble urokinase receptor is a biomarker of cardiovascular disease in chronic kidney disease. Kidney International, 2015, 87, 210-216.	5.2	52
69	The Impact of Anastomosis Time During Kidney Transplantation on Graft Loss: A Eurotransplant Cohort Study. American Journal of Transplantation, 2017, 17, 726-734.	4.7	52
70	Reasons for dose reduction of mycophenolate mofetil during the first year after renal transplantation and its impact on graft outcome. Transplant International, 2013, 26, 813-821.	1.6	51
71	The duration of asystolic ischemia determines the risk of graft failure after circulatory-dead donor kidney transplantation: A Eurotransplant cohort study. American Journal of Transplantation, 2018, 18, 881-889.	4.7	51
72	Poor Vitamin K Status Is Associated With Low Bone Mineral Density and Increased Fracture Risk in End-Stage Renal Disease. Journal of Bone and Mineral Research, 2019, 34, 262-269.	2.8	51

#	Article	IF	Citations
73	Zero-Time Renal Transplant Biopsies. Transplantation, 2016, 100, 1425-1439.	1.0	50
74	Genome-Wide Association Study of Acute Renal Graft Rejection. American Journal of Transplantation, 2017, 17, 201-209.	4.7	50
75	Identification and Characterization of Trajectories of Cardiac Allograft Vasculopathy After Heart Transplantation. Circulation, 2020, 141, 1954-1967.	1.6	50
76	RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. American Journal of Transplantation, 2016, 16, 99-110.	4.7	49
77	Localization, Etiology and Impact of Calcium Phosphate Deposits in Renal Allografts. American Journal of Transplantation, 2009, 9, 2470-2478.	4.7	46
78	The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrology Dialysis Transplantation, 2016, 31, 1002-1013.	0.7	46
79	The Causes of Kidney Allograft Failure: More Than Alloimmunity. A Viewpoint Article. Transplantation, 2020, 104, e46-e56.	1.0	45
80	Subclinical Inflammation and Chronic Renal Allograft Injury in a Randomized Trial on Steroid Avoidance in Pediatric Kidney Transplantation. American Journal of Transplantation, 2012, 12, 2730-2743.	4.7	44
81	Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenetics and Genomics, 2014, 24, 597-606.	1.5	44
82	Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiological Genomics, 2008, 32, 190-197.	2.3	43
83	The Effect of Anastomosis Time on Outcome in Recipients of Kidneys Donated After Brain Death: A Cohort Study. American Journal of Transplantation, 2015, 15, 2900-2907.	4.7	43
84	Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study. The Lancet Digital Health, 2022, 4, e18-e26.	12.3	43
85	A prospective, open-label, observational clinical cohort study of the association between delayed renal allograft function, tacrolimus exposure, and CYP3A5 genotype in adult recipients. Clinical Therapeutics, 2010, 32, 2012-2023.	2.5	40
86	Trajectories of glomerular filtration rate and progression to end stage kidney disease afterÂkidney transplantation. Kidney International, 2021, 99, 186-197.	5.2	40
87	Assessment of the Utility of Kidney Histology as a Basis for Discarding Organs in the United States: A Comparison of International Transplant Practices and Outcomes. Journal of the American Society of Nephrology: JASN, 2021, 32, 397-409.	6.1	40
88	Maturation of Dose-Corrected Tacrolimus Predose Trough Levels in Pediatric Kidney Allograft Recipients. Transplantation, 2008, 85, 1139-1145.	1.0	38
89	Invasive Aspergillosis After Kidney Transplant: Case-Control Study. Clinical Infectious Diseases, 2015, 60, 1505-1511.	5.8	38
90	Belatacept and Long-Term Outcomes in Kidney Transplantation. New England Journal of Medicine, 2016, 374, 2598-2601.	27.0	38

#	Article	IF	CITATIONS
91	Development and validation of an optimized integrative model using urinary chemokines for noninvasive diagnosis of acute allograft rejection. American Journal of Transplantation, 2020, 20, 3462-3476.	4.7	38
92	Missing Self–Induced Microvascular Rejection of Kidney Allografts: A Population-Based Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 2070-2082.	6.1	38
93	Expression of CYP3A5 and P-glycoprotein in Renal Allografts With Histological Signs of Calcineurin Inhibitor Nephrotoxicity. Transplantation, 2011, 91, 1098-1102.	1.0	37
94	Aortic calcifications and arterial stiffness as predictors of cardiovascular events in incident renal transplant recipients. Transplant International, 2013, 26, 973-981.	1.6	36
95	Replicative senescence in kidney aging, renal disease, and renal transplantation. Discovery Medicine, 2011, 11, 65-75.	0.5	36
96	The influence of renal transplantation on retained microbial–human co-metabolites. Nephrology Dialysis Transplantation, 2016, 31, 1721-1729.	0.7	35
97	Banff survey on antibody-mediated rejection clinical practices in kidney transplantation: Diagnostic misinterpretation has potential therapeutic implications. American Journal of Transplantation, 2019, 19, 123-131.	4.7	35
98	Assessing the Complex Causes of Kidney Allograft Loss. Transplantation, 2020, 104, 2557-2566.	1.0	35
99	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.7	35
100	Significance of HLA-DQ in kidney transplantation: time to reevaluate human leukocyte antigen–matching priorities to improve transplant outcomes? An expert review and recommendations. Kidney International, 2021, 100, 1012-1022.	5.2	35
101	Revisiting the changes in the Banff classification for antibody-mediated rejection after kidney transplantation. American Journal of Transplantation, 2021, 21, 2413-2423.	4.7	34
102	Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clinica Chimica Acta, 2008, 389, 87-92.	1.1	32
103	Phosphorus metabolism in peritoneal dialysis- and haemodialysis-treated patients. Nephrology Dialysis Transplantation, 2016, 31, 1508-1514.	0.7	32
104	Rabbit antithymocyte globulin and donor-specific antibodies in kidney transplantation — A review. Transplantation Reviews, 2016, 30, 85-91.	2.9	32
105	Diagnosis and management of asymptomatic bacteriuria in kidney transplant recipients: a survey of current practice in Europe. Nephrology Dialysis Transplantation, 2018, 33, 1661-1668.	0.7	32
106	Antibodies Against ARHGDIB and ARHGDIB Gene Expression Associate With Kidney Allograft Outcome. Transplantation, 2020, 104, 1462-1471.	1.0	31
107	Long-term outcome of cardiac allograft vasculopathy: Importance of the International Society for Heart and Lung Transplantation angiographic grading scale. Journal of Heart and Lung Transplantation, 2019, 38, 1189-1196.	0.6	30
108	Intragraft Antiviral-Specific Gene Expression as a Distinctive Transcriptional Signature for Studies in Polyomavirus-Associated Nephropathy. Transplantation, 2016, 100, 2062-2070.	1.0	28

#	Article	IF	Citations
109	Data-driven Derivation and Validation of Novel Phenotypes for Acute Kidney Transplant Rejection using Semi-supervised Clustering. Journal of the American Society of Nephrology: JASN, 2021, 32, 1084-1096.	6.1	28
110	Ischemia-Induced DNA Hypermethylation during Kidney Transplant Predicts Chronic Allograft Injury. Journal of the American Society of Nephrology: JASN, 2018, 29, 1566-1576.	6.1	27
111	Inflammatory macrophage–associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight, 2018, 3, .	5.0	27
112	Urinary Protein Biomarker Panel for the Diagnosis of Antibody-Mediated Rejection in Kidney Transplant Recipients. Kidney International Reports, 2020, 5, 1448-1458.	0.8	26
113	Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. American Journal of Kidney Diseases, 2022, 79, 667-676.e1.	1.9	25
114	Decreased Renal Gluconeogenesis Is a Hallmark of Chronic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 810-827.	6.1	24
115	Cell stress response impairs de novo NAD+ biosynthesis in the kidney. JCI Insight, 2022, 7, .	5.0	23
116	Effects of gastric emptying on oral mycophenolic acid pharmacokinetics in stable renal allograft recipients. British Journal of Clinical Pharmacology, 2007, 63, 541-547.	2.4	22
117	Resolution of diffuse skin and systemic <scp>K</scp> aposi's sarcoma in a renal transplant recipient after introduction of everolimus: a case report. Transplant Infectious Disease, 2015, 17, 303-307.	1.7	22
118	The Emerging Role of DNA Methylation in Kidney Transplantation: A Perspective. American Journal of Transplantation, 2016, 16, 1070-1078.	4.7	22
119	The clinical significance of epitope mismatch load in kidney transplantation: A multicentre study. Transplant Immunology, 2018, 50, 55-59.	1.2	22
120	Diagnostic performance of kSORT, a blood-based mRNA assay for noninvasive detection of rejection after kidney transplantation: A retrospective multicenter cohort study. American Journal of Transplantation, 2021, 21, 740-750.	4.7	22
121	Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: an observational cohort study. Aging, 2015, 7, 766-775.	3.1	21
122	Decreased Circulating Sclerostin Levels in Renal Transplant Recipients With Persistent Hyperparathyroidism. Transplantation, 2016, 100, 2188-2193.	1.0	21
123	Natural history of mineral metabolism, bone turnover and bone mineral density in de novo renal transplant recipients treated with a steroid minimization immunosuppressive protocol. Nephrology Dialysis Transplantation, 2020, 35, 697-705.	0.7	21
124	Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 1838-1852.	6.1	21
125	Renal Cell Carcinoma in the Allograft: What Is the Role of Polyomavirus. Case Reports in Nephrology and Urology, 2012, 2, 125-134.	1.5	20
126	Completeness and Satisfaction with the Education and Information Received by Patients Immediately after Kidney Transplant: A Mixed-Models Study. Progress in Transplantation, 2013, 23, 12-22.	0.7	20

#	Article	IF	Citations
127	Indications, risks and impact of failed allograft nephrectomy. Transplantation Reviews, 2019, 33, 48-54.	2.9	20
128	A Practical Guide to the Clinical Implementation of Biomarkers for Subclinical Rejection Following Kidney Transplantation. Transplantation, 2020, 104, 700-707.	1.0	20
129	The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation. Nature Medicine, 2022, 28, 989-998.	30.7	20
130	Combined Kidney and Intestinal Transplantation in Patients With Enteric Hyperoxaluria Secondary to Short Bowel Syndrome. American Journal of Transplantation, 2013, 13, 1910-1914.	4.7	19
131	Occurrence of Diabetic Nephropathy After Renal Transplantation Despite Intensive Glycemic Control: An Observational Cohort Study. Diabetes Care, 2019, 42, 625-634.	8.6	19
132	Risk factors, histopathological features, and graft outcome of transplant glomerulopathy in the absence of donor-specific HLA antibodies. Kidney International, 2021, 100, 401-414.	5.2	19
133	Surrogate Endpoints for Late Kidney Transplantation Failure. Transplant International, 0, 35, .	1.6	18
134	Balancing Efficacy and Toxicity of Kidney Transplant Immunosuppression. Transplantation Proceedings, 2009, 41, 3393-3395.	0.6	17
135	Microscopic nephrocalcinosis in chronic kidney disease patients. Nephrology Dialysis Transplantation, 2015, 30, 843-848.	0.7	17
136	Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney International, 2019, 96, 1195-1204.	5.2	17
137	Standardizing resistive indices in healthy pediatric transplant recipients of adult-sized kidneys. Pediatric Transplantation, 2010, 14, 126-131.	1.0	16
138	The Dual Role of Epithelial-to-Mesenchymal Transition in Chronic Allograft Injury in Pediatric Renal Transplantation. Transplantation, 2011, 92, 787-795.	1.0	16
139	Calcineurin Inhibitor Nephrotoxicity in the Era of Antibody-Mediated Rejection. Transplantation, 2016, 100, 1599-1600.	1.0	16
140	Effect of donor nephrectomy time during circulatory-dead donor kidney retrieval on transplant graft failure. British Journal of Surgery, 2019, 107, 87-95.	0.3	16
141	The role of HLA-DP mismatches and donor specific HLA-DP antibodies in kidney transplantation: a case series. Transplant Immunology, 2021, 65, 101287.	1.2	15
142	A 2020 Banff Antibodyâ€mediatedInjury Working Group examination of international practices for diagnosing antibodyâ€mediated rejection in kidney transplantation – a cohort study. Transplant International, 2021, 34, 488-498.	1.6	15
143	Circulating Donor-Specific Anti-HLA Antibodies Associate With Immune Activation Independent of Kidney Transplant Histopathological Findings. Frontiers in Immunology, 2022, 13, 818569.	4.8	15
144	Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nature Medicine, 2022, 28, 999-1005.	30.7	15

#	Article	IF	CITATIONS
145	"Time is tissueâ€â€"A minireview on the importance of donor nephrectomy, donor hepatectomy, and implantation times in kidney and liver transplantation. American Journal of Transplantation, 2021, 21, 2653-2661.	4.7	14
146	Postimplantation X-ray parameters predict functional catheter problems in peritoneal dialysis. Kidney International, 2014, 86, 1001-1006.	5.2	13
147	The time dependency of renal allograft histology. Transplant International, 2017, 30, 1081-1091.	1.6	13
148	Urinary Connective Tissue Growth Factor Is Associated with Human Renal Allograft Fibrogenesis. Transplantation, 2013, 96, 494-500.	1.0	12
149	Natural History of Bone Disease following Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2022, 33, 638-652.	6.1	12
150	Lymphocyte-depleting induction and steroid minimization after kidney transplantation: A review. Nefrologia, 2016, 36, 469-480.	0.4	11
151	The EKiTE network (epidemiology in kidney transplantation - a European validated database): an initiative epidemiological and translational European collaborative research. BMC Nephrology, 2019, 20, 365.	1.8	11
152	Histological picture of ABMR without HLA-DSA: Temporal dynamics of effector mechanisms are relevant in disease reclassification. American Journal of Transplantation, 2019, 19, 954-955.	4.7	11
153	Patterns of renal osteodystrophy 1 year after kidney transplantation. Nephrology Dialysis Transplantation, 2021, 36, 2130-2139.	0.7	11
154	Organ transplants of the future: planning for innovations including xenotransplantation. Transplant International, 2021, 34, 2006-2018.	1.6	11
155	The evolution of histological changes suggestive of antibodyâ€mediated injury, in the presence and absence of donorâ€specific antiâ€HLA antibodies. Transplant International, 2021, 34, 1824-1836.	1.6	11
156	Time course of asymmetric dimethylarginine and symmetric dimethylarginine levels after successful renal transplantation. Nephrology Dialysis Transplantation, 2014, 29, 1965-1972.	0.7	10
157	Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transplant International, 2017, 30, 695-705.	1.6	10
158	Editorial: changing of the guard at Transplant International. Transplant International, 2021, 34, 609-609.	1.6	10
159	Proposed Definitions of T Cell-Mediated Rejection and Tubulointerstitial Inflammation as Clinical Trial Endpoints in Kidney Transplantation. Transplant International, 0, 35, .	1.6	10
160	Evolution of the Definition of Rejection in Kidney Transplantation and Its Use as an Endpoint in Clinical Trials. Transplant International, 0, 35, .	1.6	10
161	Alloimmune Risk Stratification for Kidney Transplant Rejection. Transplant International, 0, 35, .	1.6	10
162	The Effect of Plasma Exchange on Synovitis in Rheumatoid Arthritis. Scandinavian Journal of Rheumatology, 1981, 10, 273-279.	1.1	9

#	Article	IF	CITATIONS
163	BENEFIT of belatacept: kidney transplantation moves forward. Nature Reviews Nephrology, 2016, 12, 261-262.	9.6	9
164	The special relativity of noninvasive biomarkers for acute rejection. American Journal of Transplantation, 2019, 19, 5-8.	4.7	9
165	The association between use of proton-pump inhibitors and excess mortality after kidney transplantation: A cohort study. PLoS Medicine, 2020, 17, e1003140.	8.4	9
166	Long-Term Survival after Kidney Transplantation. New England Journal of Medicine, 2022, 386, 497-500.	27.0	9
167	Biological pathways and comparison with biopsy signals and cellular origin of peripheral blood transcriptomic profiles during kidney allograft pathology. Kidney International, 2022, 102, 183-195.	5.2	9
168	Allograft Function as Endpoint for Clinical Trials in Kidney Transplantation. Transplant International, 0, 35, .	1.6	9
169	suPAR and FSGS. Transplantation, 2013, 96, 368-369.	1.0	8
170	Intrarenal Resistive Index after Renal Transplantation. New England Journal of Medicine, 2014, 370, 676-678.	27.0	8
171	Persistent primary cytomegalovirus infection in a kidney transplant recipient: Multi-drug resistant and compartmentalized infection leading to graft loss. Antiviral Research, 2019, 168, 203-209.	4.1	8
172	Integrative Omics Analysis Unravels Microvascular Inflammation-Related Pathways in Kidney Allograft Biopsies. Frontiers in Immunology, 2021, 12, 738795.	4.8	8
173	Clinical, Functional, and Mental Health Outcomes in Kidney Transplant Recipients 3 Months After a Diagnosis of COVID-19. Transplantation, 2022, 106, 1012-1023.	1.0	8
174	Rationale for Surrogate Endpoints and Conditional Marketing Authorization of New Therapies for Kidney Transplantation. Transplant International, 0, 35, .	1.6	8
175	Monitoring Calcineurin Inhibitor Therapy: Localizing the Moving Target. Transplantation, 2010, 89, 1308-1309.	1.0	7
176	Harnessing the diversity of the human Tâ€cell repertoire: A monitoring tool for transplantation tolerance?. European Journal of Immunology, 2010, 40, 2986-2989.	2.9	7
177	The Histological Picture of Indication Biopsies in the First 2 Weeks after Kidney Transplantation. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1484-1493.	4.5	7
178	Static histomorphometry allows for a diagnosis of bone turnover in renal osteodystrophy in the absence of tetracycline labels. Bone, 2021, 152, 116066.	2.9	7
179	Deciphering transplant outcomes of expanded kidney allografts donated after controlled circulatory death in the current transplant era. A call for caution. Transplant International, 2021, 34, 2494-2506.	1.6	7
180	The Pre-Transplant Non-HLA Antibody Burden Associates With the Development of Histology of Antibody-Mediated Rejection After Kidney Transplantation. Frontiers in Immunology, 2022, 13, 809059.	4.8	7

#	Article	IF	CITATIONS
181	Forecasting of Patient-Specific Kidney Transplant Function With a Sequence-to-Sequence Deep Learning Model. JAMA Network Open, 2021, 4, e2141617.	5.9	7
182	Noninvasive Diagnosis of Acute Rejection in Renal Transplant Patients Using Mass Spectrometric Analysis of Urine Samples: A Multicenter Diagnostic Phase III Trial. Transplantation Direct, 2022, 8, e1316.	1.6	7
183	Replicative senescence and arteriosclerosis after kidney transplantation. Nephrology Dialysis Transplantation, 2020, 35, 1984-1995.	0.7	6
184	Antibody-mediated rejection with and without donor-specific anti-human leucocyte antigen antibodies: performance of the peripheral blood 8-gene expression assay. Nephrology Dialysis Transplantation, 2020, 35, 1328-1337.	0.7	6
185	Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation. Transplant International, 0, 35, .	1.6	6
186	Association of Predicted HLA T-Cell Epitope Targets and T-Cell–Mediated Rejection After Kidney Transplantation. American Journal of Kidney Diseases, 2022, 80, 718-729.e1.	1.9	6
187	Switching From Calcineurin Inhibitors to Mammalian Target of Rapamycin Inhibitorsâ€"Finally Caught the Right Wave?. Transplantation, 2011, 92, 728-730.	1.0	5
188	Reply to Hernandez et al GWAS of acute renal graft rejection. American Journal of Transplantation, 2018, 18, 2098-2099.	4.7	5
189	The 1-year Renal Biopsy Index: a scoring system to drive biopsy indication at 1-year post-kidney transplantation. Transplant International, 2018, 31, 947-955.	1.6	5
190	External Validation of the DynPG for Kidney Transplant Recipients. Transplantation, 2021, 105, 396-403.	1.0	5
191	Looking Into the Crystal Chip: Can Microarrays Predict Graft Function?. Transplantation, 2008, 85, 499-500.	1.0	4
192	Does the definition of chronic active T cell–mediated rejection need revisiting?. American Journal of Transplantation, 2021, 21, 1689-1690.	4.7	4
193	The effect of IGL-1 preservation solution on outcome after kidney transplantation: A retrospective single-center analysis. American Journal of Transplantation, 2021, 21, 830-837.	4.7	4
194	Blood transcriptomics as non-invasive marker for kidney transplant rejection. Nephrologie Et Therapeutique, 2021, 17, S78-S82.	0.5	4
195	Second field high-resolution HLA typing for immunologic risk stratification in kidney transplantation. American Journal of Transplantation, 2021, 21, 3502-3503.	4.7	4
196	The Bumpy Road of Genomic Medicine in Transplantation. Transplantation, 2012, 93, 578-579.	1.0	3
197	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 381, e16.	27.0	3
198	Delayed Bleeding of the Transplant Duodenum After Simultaneous Kidney-pancreas Transplantation: Case Series. Transplantation, 2020, 104, 184-189.	1.0	3

#	Article	IF	CITATIONS
199	Task force groups of Transplant International: working together to globally connect the transplant community of tomorrow. Transplant International, 2021, 34, 767-768.	1.6	3
200	The power of online tools for dissemination: social media, visual abstract, and beyond. Transplant International, 2021, 34, 1174-1176.	1.6	3
201	Transplantation - clinical I. Nephrology Dialysis Transplantation, 2012, 27, ii304-ii316.	0.7	2
202	Stanniocalcin Supports the Functional Adaptation of Adult-Sized Kidneys Transplanted Into the Pediatric Recipients. Transplantation, 2012, 93, 1130-1135.	1.0	2
203	POST-STREPTOCOCCAL GLOMERULONEPHRITIS: NOT AN EXTINCT DISEASE!. Acta Clinica Belgica, 2013, 68, 215-217.	1.2	2
204	Looking Back to Evaluate the Causes of Graft Loss? A Response to Dr. Halloran and Dr. Sellares. American Journal of Transplantation, 2013, 13, 1933-1934.	4.7	2
205	Anastomosis time as risk factor for kidney transplant outcome: more pieces to the puzzle. Transplant International, 2015, 28, 1336-1337.	1.6	2
206	Foretelling Graft Outcome by Molecular Evaluation of Renal Allograft Biopsies. Transplantation, 2017, 101, 5-7.	1.0	2
207	Do We Need Noninvasive Biomarkers for Delayed Graft Function After Kidney Transplantation?. Transplantation, 2019, 103, 870-872.	1.0	2
208	Transplant International: a new beginning. Transplant International, 2021, 34, 1586-1587.	1.6	2
209	Editorial: Transplant International Goes for GOLD!. Transplant International, 2022, 36, 10340.	1.6	2
210	Xenotransplantion: Defeating the "Shumway Curse―An Interview With Drs. Bartley Griffith, Jayme Locke, Robert Montgomery, and Bruno Reichart. Transplant International, 2022, 35, 10439.	1.6	2
211	Microvascular inflammation: Gene expression changes do not necessarily reflect pathogenesis. American Journal of Transplantation, 2022, 22, 3180-3181.	4.7	2
212	A PROTOCOL BIOPSY ANALYSIS FROM AN NIH MULTICENTER PEDIATRIC RENAL TRANSPLANT TRIAL REVEALS NO ADVERSE EFFECT OF STEROID AVOIDANCE ON THE HISTOLOGICAL EVOLUTION OF CHRONIC GRAFT INJURY. Transplantation, 2008, 86, 18.	1.0	1
213	Mineral metabolism disturbances in kidney donors: smoke, no fire (yet). Kidney International, 2016, 90, 734-736.	5. 2	1
214	Intraoperative Renal Perfusion in Kidney Transplantation. Transplantation, 2018, 102, S557.	1.0	1
215	Single Nucleotide Polymorphisms in Renal Transplantation: Cannot See the Wood for the Trees. Transplantation, 2019, 103, 2464-2465.	1.0	1
216	Autoantibodies against granulocyte macrophage colonyâ€stimulating factor and <i>Nocardia</i> infection in solid organ transplant recipients. Transplant International, 2020, 33, 1827-1829.	1.6	1

#	Article	IF	CITATIONS
217	Mesangial matrix expansion in a novel mouse model of diabetic kidney disease associated with the metabolic syndrome. Journal of Nephropathology, 2021, 10, e17-e17.	0.2	1
218	1202. Subinhibitory Concentrations of Omadacycline Inhibit Staphylococcus aureus Hemolytic Activity in Vitro. Open Forum Infectious Diseases, 2020, 7, S622-S623.	0.9	1
219	Estimated Renal Metabolomics at Reperfusion Predicts One-Year Kidney Graft Function. Metabolites, 2022, 12, 57.	2.9	1
220	Activity of omadacycline in vitro against Clostridioides difficile and preliminary efficacy assessment in a hamster model of C. difficile-associated diarrhoea. Journal of Global Antimicrobial Resistance, 2022, 30, 96-99.	2.2	1
221	MO590: A Home-Based Exercise and Physical Activity Intervention After Kidney Transplantation: Impact of Exercise Intensity. The Phoenix-Kidney Study Protocol. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	1
222	Polyomavirus BK Genome Comparison Shows High Genetic Diversity in Kidney Transplant Recipients Three Months after Transplantation. Viruses, 2022, 14, 1533.	3.3	1
223	INTEGRATIVE GENOMICS TO IDENTIFY NON-HLA ALLOGENIC KIDNEY-SPECIFIC TARGETS AFTER KIDNEY TRANSPLANTATION. Transplantation, 2008, 86, 13.	1.0	0
224	DELAYED GRAFT FUNCTION (DGF) AFFECTS EARLY TACROLIMUS DISPOSITION IN RENAL ALLOGRAFT RECIPIENTS: A POSSIBLE LINK TO POSTTRANSPLANTATION DIABETES MELLITUS (PTDM) Transplantation, 2010, 90, 345.	1.0	0
225	Organ transplantation after cardiac death. Lancet, The, 2011, 377, 203.	13.7	0
226	Cardiovascular complications in CKD 5D. Nephrology Dialysis Transplantation, 2012, 27, ii227-ii251.	0.7	0
227	Cluster Analysis Shows that Chronic Damage in Early Indication Biopsies Predicts Long-Term Graft Survival, While Early Active Inflammation Does Not. Transplantation, 2012, 94, 20.	1.0	O
228	Cluster Analysis Shows the Multifaceted Aspects of Microcirculation Inflammation and Chronic Antibody-Mediated Rejection in Early Indication Biopsies of Renal Allografts. Transplantation, 2012, 94, 20.	1.0	0
229	Recipients' Smoking Habits and Death-Censored Renal Allograft Survival. Transplantation, 2012, 94, 24.	1.0	0
230	Not All Histological Damage in Baseline Biopsies Is Deleterious for Renal Allograft Survival. Transplantation, 2012, 94, 120.	1.0	0
231	Not All Histological Damage in Baseline Biopsies Is Deleterious for Renal Allograft Survival. Transplantation, 2012, 94, 1042.	1.0	0
232	Specific miRNA \hat{E}^{1} 4s and their Downstream Targets Are Associated with Acute Rejection in Pediatric Renal Allografts. Transplantation, 2012, 94, 116.	1.0	0
233	Clinical Outcome and Cost Analysis of Kidney Transplantation From Extended Criteria Brain Death Donors Transplantation, 2014, 98, 653.	1.0	0
234	The Clinical Features of Trombotic Microangiopathies Post Transplantation Transplantation, 2014, 98, 532.	1.0	0

#	Article	lF	Citations
235	Perturbation in Gene Expression Due to Polyomavirus Nephropathy in Kidney Grafts Transplantation, 2014, 98, 224.	1.0	0
236	Anastomosis Time During Kidney Transplantation Influences Long-Term Allograft Function Transplantation, 2014, 98, 472-473.	1.0	0
237	Telomere Length, Cardiovascular Risk and the Discrepancy Between Baseline and Post-Transplant Renal Allograft Histology Transplantation, 2014, 98, 473.	1.0	0
238	The Impact of Renal Transplantation On Microbiota Derived Uremic Retention Solutes Transplantation, 2014, 98, 577.	1.0	0
239	Proteinuria, Histology and Kidney-Allograft Survival Transplantation, 2014, 98, 78-79.	1.0	0
240	A Pivotal Circulating Antibody Panel for Pre-Transplant Prediction of FSGS Recurrence After Kidney Transplantation Transplantation, 2014, 98, 227.	1.0	0
241	P136 De novo HLA antibodies with similar specificities in three recipients from the same deceased organ donor. Human Immunology, 2016, 77, 137.	2.4	0
242	Rethinking peritubular capillary basement membrane multilayering in renal transplant pathology: a case report. Pediatric Nephrology, 2017, 32, 697-701.	1.7	0
243	Time to Cast the Prejudices Towards Transplantation of Kidneys Donated After Cardiac Death?. EClinicalMedicine, 2018, 4-5, 4-5.	7.1	0
244	In reply to McGuinty et al Journal of Heart and Lung Transplantation, 2020, 39, 848-850.	0.6	0
245	TO006NON-INVASIVE DIAGNOSIS OF BK VIRUS-ASSOCIATED NEPHROPATHY USING URINARY PROTEOMICS IN KIDNEY ALLOGRAFT PATIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
246	Authors' Reply. Journal of the American Society of Nephrology: JASN, 2021, 32, 2388-2389.	6.1	0
247	A joint transition model for evaluating eGFR as biomarker for rejection after kidney transplantation. Statistical Modelling, 0, , 1471082X2110486.	1.1	0
248	Intrarenal arteriosclerosis and telomere attrition associate with dysregulation of the cholesterol pathway. Aging, 2020, 12, 7830-7847.	3.1	0
249	Sub-growth-inhibitory concentrations of omadacycline inhibit <i>Staphylococcus aureus </i> haemolytic activity <i>in vitro </i> . JAC-Antimicrobial Resistance, 2022, 4, dlab 190.	2.1	0
250	Title is missing!. , 2020, 17, e1003140.		0
251	Title is missing!. , 2020, 17, e1003140.		0
252	Title is missing!. , 2020, 17, e1003140.		0

#	Article	IF	CITATIONS
253	Title is missing!. , 2020, 17, e1003140.		0
254	Title is missing!. , 2020, 17, e1003140.		0
255	Title is missing!. , 2020, 17, e1003140.		0
256	Editorial: Rubies for ESOT!. Transplant International, 2022, 35, 10529.	1.6	0
257	FC 117: Clinical Validation of Automated Urinary Chemokine Assays for Non-Invasive Detection of Kidney Transplant Rejection: A Large Prospective Cohort Study. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0