Lai Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088578/publications.pdf

Version: 2024-02-01

		28190	35952
161	10,422	55	97
papers	citations	h-index	g-index
165	165	165	8085
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enhanced Fenton-like process via interfacial electron donating of pollutants over in situ Cobalt-doped graphitic carbon nitride. Journal of Colloid and Interface Science, 2022, 608, 673-682.	5.0	16
2	Contribution of extracellular polymeric substances and microbial community on the safety of drinking water quality: By mean of Cu/activated carbon biofiltration. Chemosphere, 2022, 286, 131686.	4.2	5
3	BiO(OH)xI1-x solid solution with rich oxygen vacancies: interlayer guest hydroxyl for improved photocatalytic properties. Journal of Colloid and Interface Science, 2022, 605, 1-12.	5.0	7
4	Spatiotemporal changes in microtubule dynamics during dendritic morphogenesis. Fly, 2022, 16, 13-23.	0.9	2
5	CoO anchored on boron nitride nanobelts for efficient removal of water contaminants by peroxymonosulfate activation. Chemical Engineering Journal, 2022, 430, 132915.	6.6	2
6	Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Applied Catalysis B: Environmental, 2022, 302, 120824.	10.8	75
7	Enhanced photocatalytic efficiency by direct photoexcited electron transfer from pollutants adsorbed on the surface valence band of BiOBr modified with graphitized C. Journal of Hazardous Materials, 2022, 424, 127502.	6.5	22
8	Engineering the low-coordinated single cobalt atom to boost persulfate activation for enhanced organic pollutant oxidation. Applied Catalysis B: Environmental, 2022, 303, 120877.	10.8	54
9	Inhibiting the increase of antibiotic resistance genes during drinking water distribution by superior microbial interface using Fe modified granular activated carbon. Journal of Cleaner Production, 2022, 335, 130225.	4.6	14
10	Effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation in drinking water distribution systems via interaction among iron particles, biofilms, and chlorine. Chemosphere, 2022, 292, 133364.	4.2	9
11	Surface-Confined Destruction of Pollutants with H2O2 Assistance over Cu0@CuOx-N-Graphitic Carbon Suspensions. Journal of Physical Chemistry C, 2022, 126, 1366-1375.	1.5	2
12	Rapid pollutant degradation by peroxymonosulfate <i>via</i> an unusual mediated-electron transfer pathway under spatial-confinement. RSC Advances, 2022, 12, 5236-5244.	1.7	9
13	Ultrathin Bi ₄ O ₅ Br ₂ nanosheets with surface oxygen vacancies and strong interaction with Bi ₂ O ₂ CO ₃ for highly efficient removal of water contaminants. Environmental Science: Nano, 2022, 9, 1341-1352.	2.2	5
14	Surface sulfur vacancies enhanced electron transfer over Co-ZnS quantum dots for efficient degradation of plasticizer micropollutants by peroxymonosulfate activation. Chinese Chemical Letters, 2022, 33, 3829-3834.	4.8	19
15	Design, synthesis, and biological activity of a novel series of 2-ureidonicotinamide derivatives against influenza A virus. Current Medicinal Chemistry, 2022, 29, .	1.2	1
16	Boosting the Extra Generation of Superoxide Radicals on Graphitic Carbon Nitride with Carbon Vacancies by the Modification of Pollutant Adsorption for High-Performance Photocatalytic Degradation. ACS ES&T Engineering, 2022, 2, 1296-1305.	3.7	8
17	Enhanced •OH generation and pollutants removal by framework Cu doped LaAlO3/Al2O3. Journal of Hazardous Materials, 2022, 431, 128578.	6.5	12
18	Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates. Science of the Total Environment, 2022, 831, 154972.	3.9	10

#	Article	IF	CITATIONS
19	Carbonized MOF-Coated Zero-Valent Cu Driving an Efficient Dual-Reaction-Center Fenton-like Water Treatment Process through Utilizing Pollutants and Natural Dissolved Oxygen. ACS ES&T Water, 2022, 2, 174-183.	2.3	25
20	Peroxymonosulfate as inducer driving interfacial electron donation of pollutants over oxygen-rich carbon–nitrogen graphene-like nanosheets for water treatment. Journal of Colloid and Interface Science, 2022, 622, 272-283.	5.0	8
21	Origin of the Excellent Activity and Selectivity of a Single-Atom Copper Catalyst with Unsaturated Cu-N ₂ Sites via Peroxydisulfate Activation: Cu(III) as a Dominant Oxidizing Species. Environmental Science & Env	4.6	77
22	Targeting 5-HT as a Potential Treatment for Social Deficits in Autism. Neuroscience Bulletin, 2022, , 1.	1.5	4
23	Design and synthesis of 1,3-diphenylpyrimidine-2,4($1 < i > H < /i >$,3 < $i > H < /i >$)-dione derivatives as antitumor agents $< i > via < /i >$ elevating ROS production to induce apoptosis. New Journal of Chemistry, 2022, 46, 12278-12289.	1.4	2
24	Few-layered Bi4O5I2 nanosheets enclosed by {1 0â^'1} facets with oxygen vacancies for highly-efficient removal of water contaminants. Journal of Hazardous Materials, 2022, 437, 129274.	6.5	10
25	Coordination Number Dependent Catalytic Activity of Singleâ€Atom Cobalt Catalysts for Fentonâ€Like Reaction. Advanced Functional Materials, 2022, 32, .	7.8	87
26	Nanoconfinement-Regulated Peroxymonosulfate Activation via an Anomalously Efficient Mediated Electron-Transfer Pathway on Cobalt. ACS ES&T Engineering, 2022, 2, 2014-2022.	3.7	19
27	Synthesis, biological activity, molecular docking studies of a novel series of 3-Aryl-7 <i>H</i> -thiazolo[3,2- <i>b</i>]-1,2,4-triazin-7-one derivatives as the acetylcholinesterase inhibitors. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2478-2489.	2.0	2
28	Nitrogen-Coordinated Cobalt Embedded in a Hollow Carbon Polyhedron for Superior Catalytic Oxidation of Organic Contaminants with Peroxymonosulfate. ACS ES&T Engineering, 2021, 1, 76-85.	3.7	48
29	Enhanced Fenton-like efficiency by the synergistic effect of oxygen vacancies and organics adsorption on FexOy-d-g-C3N4 with Feâ€'N complexation. Journal of Hazardous Materials, 2021, 408, 124818.	6.5	31
30	Vanadium tetrasulfide cross-linking graphene-like carbon driving a sustainable electron supply chain from pollutants through the activation of dissolved oxygen and hydrogen peroxide. Environmental Science: Nano, 2021, 8, 86-96.	2.2	15
31	More octahedral Cu+ and surface acid sites in uniformly porous Cu-Al2O3 for enhanced Fenton catalytic performances. Journal of Hazardous Materials, 2021, 406, 124739.	6.5	23
32	Enhancing inhibition of disinfection byproducts formation and opportunistic pathogens growth during drinking water distribution by Fe2O3/Coconut shell activated carbon. Environmental Pollution, 2021, 268, 115838.	3.7	4
33	Improving the charge properties of the WO ₃ photoanode using a BiFeO ₃ ferroelectric nanolayer. Physical Chemistry Chemical Physics, 2021, 23, 8241-8245.	1.3	11
34	Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 2021, 14, 655037.	1.4	7
35	Preparation of Sulfamates and Sulfamides Using a Selective Sulfamoylation Agent. Organic Letters, 2021, 23, 2595-2599.	2.4	9
36	Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH. Separation and Purification Technology, 2021, 260, 118234.	3.9	20

#	Article	IF	Citations
37	Unraveling the High-Activity Origin of Single-Atom Iron Catalysts for Organic Pollutant Oxidation via Peroxymonosulfate Activation. Environmental Science & Environmental Science & 2021, 55, 8318-8328.	4.6	198
38	Cationâ~Ï€ structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres. Applied Catalysis B: Environmental, 2021, 286, 119912.	10.8	71
39	Design, Synthesis and Anticancer Activity of a New Series of N-aryl-N′-[4-(pyridin-2-ylmethoxy)benzyl]urea Derivatives. Molecules, 2021, 26, 3496.	1.7	1
40	Ï€-Ï€ conjugation driving peroxymonosulfate activation for pollutant elimination over metal-free graphitized polyimide surface. Journal of Hazardous Materials, 2021, 412, 125191.	6.5	13
41	Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nature Communications, 2021, 12, 3701.	5.8	175
42	Effect of Increasing C/N Ratio on Performance and Microbial Community Structure in a Membrane Bioreactor with a High Ammonia Load. International Journal of Environmental Research and Public Health, 2021, 18, 8070.	1.2	2
43	Destruction of microbial stability in drinking water distribution systems by trace phosphorus polluted water source. Chemosphere, 2021, 275, 130032.	4.2	5
44	Cation-Ï€ induced surface cleavage of organic pollutants with â‹OH formation from H2O for water treatment. IScience, 2021, 24, 102874.	1.9	20
45	Recent Advances in Small-Molecule HIV-1 Integrase Inhibitors. Current Medicinal Chemistry, 2021, 28, 4910-4934.	1.2	5
46	Efficient light-free activation of peroxymonosulfate by carbon ring conjugated carbon nitride for elimination of organic pollutants. Chemical Engineering Journal, 2021, 420, 129671.	6.6	24
47	H2O2 inducing dissolved oxygen activation and electron donation of pollutants over Fe-ZnS quantum dots through surface electron-poor/rich microregion construction for water treatment. Journal of Hazardous Materials, 2021, 420, 126579.	6.5	22
48	Enhancing photocatalytic performance by direct photo-excited electron transfer from organic pollutants to low-polymerized graphitic carbon nitride with more C-NH/NH2 exposure. Applied Catalysis B: Environmental, 2021, 296, 120316.	10.8	26
49	The control of red water occurrence and opportunistic pathogens risks in drinking water distribution systems: A review. Journal of Environmental Sciences, 2021, 110, 92-98.	3.2	17
50	Identification of Influenza PAN Endonuclease Inhibitors via 3D-QSAR Modeling and Docking-Based Virtual Screening. Molecules, 2021, 26, 7129.	1.7	5
51	Enhanced polarization of electron-poor/rich micro-centers over nZVCu-Cu(II)-rGO for pollutant removal with H2O2. Journal of Hazardous Materials, 2020, 383, 121182.	6.5	61
52	Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis. Journal of Hazardous Materials, 2020, 393, 121280.	6.5	105
53	Efficient solar hydrogen production coupled with organics degradation by a hybrid tandem photocatalytic fuel cell using a silicon-doped TiO2 nanorod array with enhanced electronic properties. Journal of Hazardous Materials, 2020, 394, 121425.	6.5	38
54	Two-dimensional graphene/g-C3N4 in-plane hybrid heterostructure for enhanced photocatalytic activity with surface-adsorbed pollutants assistant. Applied Catalysis B: Environmental, 2020, 268, 118397.	10.8	71

#	Article	IF	CITATIONS
55	Effects of disinfection efficiency on microbial communities and corrosion processes in drinking water distribution systems simulated with actual running conditions. Journal of Environmental Sciences, 2020, 88, 273-282.	3.2	21
56	Design, synthesis, and biological activity of a novel series of benzofuran derivatives against oestrogen receptor-dependent breast cancer cell lines. Bioorganic Chemistry, 2020, 95, 103566.	2.0	12
57	Enhanced Fenton-like catalytic performance of Cu-Al/KIT-6 and the key role of O2 in triggering reaction. Chemical Engineering Journal, 2020, 387, 124006.	6.6	15
58	Porous \hat{l}^2 -Bi2O3 with multiple vacancy associates on highly exposed active {220} facets for enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 265, 118563.	10.8	62
59	Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chemical Engineering Journal, 2020, 394, 123936.	6.6	63
60	Highly Efficient Hydrogen and Electricity Production Combined with Degradation of Organics Based on a Novel Solar Water-Energy Nexus System. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2505-2515.	4.0	20
61	Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. Chemosphere, 2020, 247, 125784.	4.2	80
62	<scp>I</scp> -Ascorbic acid oxygen-induced micro-electronic fields over metal-free polyimide for peroxymonosulfate activation to realize efficient multi-pathway destruction of contaminants. Journal of Materials Chemistry A, 2020, 8, 810-819.	5.2	31
63	New Insights into the Generation of Singlet Oxygen in the Metal-Free Peroxymonosulfate Activation Process: Important Role of Electron-Deficient Carbon Atoms. Environmental Science & Emp; Technology, 2020, 54, 1232-1241.	4.6	400
64	Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 279, 119401.	10.8	104
65	Simple Amphoteric Charge Strategy to Reinforce Superhydrophilic Polyvinylidene Fluoride Membrane for Highly Efficient Separation of Various Surfactant-Stabilized Oil-in-Water Emulsions. ACS Applied Materials & Diterfaces, 2020, 12, 47018-47028.	4.0	52
66	The interaction of surface electron distribution-polarized Fe/polyimide hybrid nanosheets with organic pollutants driving a sustainable Fenton-like process. Materials Advances, 2020, 1, 1083-1091.	2.6	9
67	Synthesis and biological evaluation of a new series of 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as new anticancer agents. Medicinal Chemistry Research, 2020, 29, 1413-1423.	1.1	4
68	Dual-reaction-center catalytic process continues Fenton's story. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	36
69	Mesoporous reduction state cobalt species-doped silica nanospheres: An efficient Fenton-like catalyst for dual-pathway degradation of organic pollutants. Journal of Colloid and Interface Science, 2020, 576, 59-67.	5.0	22
70	Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light. Journal of Colloid and Interface Science, 2020, 576, 385-393.	5.0	23
71	Efficient Fenton-like Process for Pollutant Removal in Electron-Rich/Poor Reaction Sites Induced by Surface Oxygen Vacancy over Cobalt–Zinc Oxides. Environmental Science &	4.6	137
72	Synthesis, Characterization, and Biological Evaluation of Novel 7-Oxo-7H-thiazolo[3,2-b]-1,2,4-triazine-2-carboxylic Acid Derivatives. Molecules, 2020, 25, 1307.	1.7	9

#	Article	IF	Citations
73	Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification. Applied Catalysis B: Environmental, 2020, 270, 118874.	10.8	207
74	General synthesis of carbon and oxygen dual-doped graphitic carbon nitride via copolymerization for non-photochemical oxidation of organic pollutant. Journal of Hazardous Materials, 2020, 394, 122578.	6.5	71
75	Tailoring aromatic ring-terminated edges of g-C ₃ N ₄ nanosheets for efficient photocatalytic hydrogen evolution with simultaneous antibiotic removal. Catalysis Science and Technology, 2020, 10, 5470-5479.	2.1	16
76	Hierarchically Active Poly(vinylidene fluoride) Membrane Fabricated by In Situ Generated Zero-Valent Iron for Fouling Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10993-11004.	4.0	49
77	Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Computational Biology and Chemistry, 2020, 85, 107241.	1.1	41
78	Efficient removal of disinfection by-products precursors and inhibition of bacterial detachment by strong interaction of EPS with coconut shell activated carbon in ozone/biofiltration. Journal of Hazardous Materials, 2020, 392, 122077.	6.5	38
79	One-year survey of opportunistic premise plumbing pathogens and free-living amoebae in the tap-water of one northern city of China. Journal of Environmental Sciences, 2019, 77, 20-31.	3.2	46
80	O3-BAC-Cl2: A multi-barrier process controlling the regrowth of opportunistic waterborne pathogens in drinking water distribution systems. Journal of Environmental Sciences, 2019, 76, 142-153.	3.2	19
81	Enhanced azo dye decolorization through charge transmission by Ïf-Sb3+-azo complexes on amorphous Sb2S3 under visible light irradiation. Applied Catalysis B: Environmental, 2019, 240, 132-140.	10.8	45
82	Accelerated degradation of pollutants via a close interface connection in heterojunction, and special solid-liquid interactions. Journal of Colloid and Interface Science, 2019, 553, 598-605.	5.0	3
83	Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate. Applied Catalysis B: Environmental, 2019, 257, 117904.	10.8	79
84	Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance. Applied Surface Science, 2019, 478, 304-312.	3.1	68
85	Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites. Environmental Science: Nano, 2019, 6, 798-808.	2.2	49
86	Enhanced photocatalytic performance by the synergy of Bi vacancies and BiO in BiO-Bi2-Î MoO6. Applied Catalysis B: Environmental, 2019, 257, 117785.	10.8	60
87	Design, Synthesis and Biological Evaluation of a New Series of 1-Aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea Derivatives as Antiproliferative Agents. Molecules, 2019, 24, 2108.	1.7	3
88	Discovery of 7-bromo-1,4-dihydrothieno[3',2':5,6]thiopyrano[4,3-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Medicinal Chemistry Research, 2019, 28, 1000-1009.	1.1	2
89	Efficient Fenton-like Process Induced by Fortified Electron-Rich O Microcenter on the Reduction State Cu-Doped CNO Polymer. ACS Applied Materials & Emp; Interfaces, 2019, 11, 16496-16505.	4.0	59
90	Internal electric field construction on dual oxygen group-doped carbon nitride for enhanced photodegradation of pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2019, 256, 117705.	10.8	74

#	Article	IF	Citations
91	In situ generation and efficient activation of H2O2 for pollutant degradation over CoMoS2 nanosphere-embedded rGO nanosheets and its interfacial reaction mechanism. Journal of Colloid and Interface Science, 2019, 543, 214-224.	5.0	47
92	Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248, 1-10.	10.8	291
93	Framework Cu-doped boron nitride nanobelts with enhanced internal electric field for effective Fenton-like removal of organic pollutants. Journal of Materials Chemistry A, 2019, 7, 6946-6956.	5.2	54
94	Synthesis, Characterization, and Biological Activity of a Novel Series of Benzo[4,5]imidazo[2,1-b]thiazole Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors. Molecules, 2019, 24, 682.	1.7	18
95	One-step scalable synthesis of honeycomb-like g-C ₃ N ₄ with broad sub-bandgap absorption for superior visible-light-driven photocatalytic hydrogen evolution. RSC Advances, 2019, 9, 32674-32682.	1.7	20
96	Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. Chemosphere, 2019, 219, 971-980.	4.2	64
97	Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Chemosphere, 2019, 218, 197-204.	4.2	48
98	Effects of O3/Cl2 disinfection on corrosion and opportunistic pathogens growth in drinking water distribution systems. Journal of Environmental Sciences, 2018, 73, 38-46.	3.2	27
99	Fe-N-Graphene Wrapped Al ₂ O ₃ /Pentlandite from Microalgae: High Fenton Catalytic Efficiency from Enhanced Fe ³⁺ Reduction. Environmental Science & Eamp; Technology, 2018, 52, 3608-3614.	4.6	64
100	Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution. RSC Advances, 2018, 8, 3312-3320.	1.7	44
101	4-Phenoxyphenol-Functionalized Reduced Graphene Oxide Nanosheets: A Metal-Free Fenton-Like Catalyst for Pollutant Destruction. Environmental Science &	4.6	180
102	Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems. Water Research, 2018, 139, 168-176.	5.3	58
103	Efficient Destruction of Pollutants in Water by a Dual-Reaction-Center Fenton-like Process over Carbon Nitride Compounds-Complexed Cu(II)-CuAlO ₂ . Environmental Science & Emp; Technology, 2018, 52, 4294-4304.	4.6	203
104	Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions. Chemical Engineering Journal, 2018, 332, 572-581.	6.6	131
105	Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. Environmental Pollution, 2018, 234, 71-78.	3.7	42
106	AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light. Applied Catalysis B: Environmental, 2018, 220, 118-125.	10.8	51
107	Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation. Environmental Science & Enhanced & Enhanc	4.6	455
108	Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process. Journal of Colloid and Interface Science, 2018, 527, 251-259.	5.0	35

#	Article	IF	CITATIONS
109	Highly improved photoelectrocatalytic efficiency and stability of WO ₃ photoanodes by the facile <i>in situ</i> growth of TiO ₂ branch overlayers. Nanoscale, 2018, 10, 13393-13401.	2.8	27
110	Enhanced photoactivity of Bi2WO6 by iodide insertion into the interlayer for water purification under visible light. Chemical Engineering Journal, 2018, 352, 664-672.	6.6	65
111	A dual-reaction-center Fenton-like process on –Cî€,N–Cu linkage between copper oxides and defect-containing g-C ₃ N ₄ for efficient removal of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 17819-17828.	5.2	73
112	A self-sustaining monolithic photoelectrocatalytic/photovoltaic system based on a WO3/BiVO4 photoanode and Si PVC for efficiently producing clean energy from refractory organics degradation. Applied Catalysis B: Environmental, 2018, 238, 309-317.	10.8	37
113	Discovery of 4,5-Dihydro-1H-thieno $[2\hat{a}\in^2,3\hat{a}\in^2:2,3]$ thiepino $[4,5-c]$ pyrazole-3-carboxamide Derivatives as the Potential Epidermal Growth Factor Receptors for Tyrosine Kinase Inhibitors. Molecules, 2018, 23, 1980.	1.7	7
114	Synthesis, \hat{I}^2 -catenin Translocation Capability and ALP Activation Activity of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one Derivatives. Medicinal Chemistry, 2018, 14, 67-73.	0.7	5
115	Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation. Applied Catalysis B: Environmental, 2017, 207, 9-16.	10.8	86
116	Impacts of bacteria and corrosion on removal of natural organic matter and disinfection byproducts in different drinking water distribution systems. International Biodeterioration and Biodegradation, 2017, 117, 52-59.	1.9	32
117	Design, synthesis and biological activities of N-(furan-2-ylmethyl)-1H-indole-3-carboxamide derivatives as epidemal growth factor receptor inhibitors and anticancer agents. Chemical Research in Chinese Universities, 2017, 33, 365-372.	1.3	5
118	Selective H ₂ O ₂ conversion to hydroxyl radicals in the electron-rich area of hydroxylated C-g-C ₃ N ₄ /CuCoâ€"Al ₂ O ₃ . Journal of Materials Chemistry A, 2017, 5, 7153-7164.	5.2	136
119	p-AgI anchored on {001} facets of n-Bi2O2CO3 sheets with enhanced photocatalytic activity and stability. Applied Catalysis B: Environmental, 2017, 205, 34-41.	10.8	97
120	Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. Journal of Hazardous Materials, 2017, 339, 174-181.	6.5	29
121	Design, synthesis and cytotoxic evaluation of a novel series of benzo[d]thiazole-2-carboxamide derivatives as potential EGFR inhibitors. Medicinal Chemistry Research, 2017, 26, 2180-2189.	1.1	11
122	Oxygen vacancy enhanced photostability and activity of plasmon-Ag composites in the visible to near-infrared region for water purification. Applied Catalysis B: Environmental, 2016, 199, 230-240.	10.8	40
123	Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Research, 2016, 102, 421-427.	5.3	164
124	Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper–aluminum–silica nanospheres for water purification. Journal of Materials Chemistry A, 2016, 4, 8610-8619.	5.2	73
125	Engineering 1,3-Alternate Calixcarbazole for Recognition and Sensing of Bisphenol F in Water. Analytical Chemistry, 2016, 88, 10751-10756.	3.2	19
126	Galvanic-like cells produced by negative charge nonuniformity of lattice oxygen on d-TiCuAl–SiO ₂ nanospheres for enhancement of Fenton-catalytic efficiency. Environmental Science: Nano, 2016, 3, 1483-1492.	2.2	68

#	Article	IF	Citations
127	Cu-doped Bi2O3/Bi0 composite as an efficient Fenton-like catalyst for degradation of 2-chlorophenol. Separation and Purification Technology, 2016, 157, 203-208.	3.9	29
128	Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres. Applied Catalysis B: Environmental, 2016, 181, 561-569.	10.8	118
129	Synthesis, characterization and biological activity of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as epidermal growth factor receptor inhibitors. Chemical Research in Chinese Universities, 2015, 31, 936-941.	1.3	4
130	Treatment of NOM fractions of reservoir sediments: Effect of UV and chlorination on formation of DBPs. Separation and Purification Technology, 2015, 154, 228-235.	3.9	32
131	Mechanism of Catalytic Ozonation in Fe _{0₃@SBA-15 Aqueous Suspension for Destruction of Ibuprofen. Environmental Science & Environmental}	4.6	286
132	Enhanced Fenton Catalytic Efficiency of γ-Cu–Al ₂ O ₃ by σ-Cu ²⁺ –Ligand Complexes from Aromatic Pollutant Degradation. Environmental Science & Edward & Science & Edward & Edw	4.6	247
133	Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres. Chemical Engineering Journal, 2015, 274, 298-306.	6.6	170
134	Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. Journal of Hazardous Materials, 2015, 294, 195-200.	6.5	107
135	Efficient catalytic aerobic oxidation ofÂchlorinated phenols with mixed-valent manganese oxide nanoparticles. Journal of Chemical Technology and Biotechnology, 2015, 90, 80-86.	1.6	25
136	Plasmonâ€induced reduction of bromate with Au–Ag–Agl/Al ₂ O ₃ under visibleâ€ight irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1425-1431.	1.6	7
137	Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection. Water Research, 2014, 60, 174-181.	5.3	101
138	Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. Journal of Environmental Sciences, 2014, 26, 1154-1161.	3.2	60
139	Development of Thieno[3`,2`:5,6]thiopyrano[4,3-c]pyrazole-3-carboxamide Derivatives as the Estrogen Receptor Ligands: Synthesis, Characterization and Biological Activity. Medicinal Chemistry, 2014, 10, 836-842.	0.7	2
140	Characterization and adsorption performance of Zrâ€doped akaganéite for efficient arsenic removal. Journal of Chemical Technology and Biotechnology, 2013, 88, 629-635.	1.6	40
141	Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions. Frontiers of Environmental Science and Engineering, 2013, 7, 451-456.	3.3	9
142	Efficient Removal of Toxic Pollutants Over Fe–Co/ZrO2 Bimetallic Catalyst with Ozone. Catalysis Letters, 2012, 142, 1026-1032.	1.4	11
143	Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water. Water Research, 2012, 46, 1225-1232.	5.3	77
144	Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Applied Catalysis B: Environmental, 2012, 125, 418-424.	10.8	174

#	Article	IF	CITATIONS
145	Enhanced Photodegradation of Toxic Pollutants on Plasmonic Au–Ag–Agl/Al2O3 Under Visible Irradiation. Catalysis Letters, 2012, 142, 646-654.	1.4	14
146	Enhanced electron transfer and silver-releasing suppression in Ag–AgBr/titanium-doped Al2O3 suspensions with visible-light irradiation. Journal of Hazardous Materials, 2012, 219-220, 276-282.	6.5	14
147	Degradation characteristics of humic acid over iron oxides/Fe0 core–shell nanoparticles with UVA/H2O2. Journal of Hazardous Materials, 2010, 173, 474-479.	6.5	50
148	Synthesis and biological activity of 3,6-diaryl-7H-thiazolo[3,2-b][1,2,4]triazin-7-one derivatives as novel acetylcholinesterase inhibitors. Science China Chemistry, 2010, 53, 2297-2303.	4.2	9
149	Selective photocatalytic degradation of azodyes in NiO/Ag ₃ VO ₄ suspension. Journal of Chemical Technology and Biotechnology, 2010, 85, 1522-1527.	1.6	3
150	Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped Î ³ -Fe2O3. Applied Catalysis B: Environmental, 2010, 100, 62-67.	10.8	131
151	Plasmon-Induced Photodegradation of Toxic Pollutants with Agâ^'AgI/Al ₂ O ₃ under Visible-Light Irradiation. Journal of the American Chemical Society, 2010, 132, 857-862.	6.6	541
152	Adsorption and removal of arsenite on ordered mesoporous Fe-modified ZrO ₂ . Desalination and Water Treatment, 2009, 8, 139-145.	1.0	19
153	Photoassisted degradation of endocrine disruptors over CuOx–FeOOH with H2O2 at neutral pH. Applied Catalysis B: Environmental, 2009, 87, 30-36.	10.8	84
154	Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide. Environmental Science & Env	4.6	203
155	Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research, 2009, 43, 1766-1774.	5.3	288
156	Characterization and Reactivity of MnO _{<i>x</i>} Supported on Mesoporous Zirconia for Herbicide 2,4-D Mineralization with Ozone. Environmental Science & Environmenta	4.6	118
157	Photoassisted Degradation of Azodyes over FeOxH2x-3/FeO in the Presence of H2O2 at Neutral pH Values. Environmental Science &	4.6	47
158	Photocatalytic Degradation of Pathogenic Bacteria with AgI/TiO2under Visible Light Irradiation. Langmuir, 2007, 23, 4982-4987.	1.6	217
159	Ag/AgBr/TiO2Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. Journal of Physical Chemistry B, 2006, 110, 4066-4072.	1.2	552
160	Visible-Light-Induced Photocatalytic Degradation of Azodyes in Aqueous Agl/TiO2Dispersion. Environmental Science & Environment	4.6	180
161	Efficient Destruction of Pathogenic Bacteria with NiO/SrBi2O4under Visible Light Irradiation. Environmental Science & Environm	4.6	81