Xiaofeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5088245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. Journal of Colloid and Interface Science, 2022, 606, 748-757.	5.0	93
2	All-weather-available electrothermal and solar–thermal wood-derived porous carbon-based steam generators for highly efficient water purification. Materials Chemistry Frontiers, 2022, 6, 306-315.	3.2	15
3	Hierarchically porous graphene/wood-derived carbon activated using ZnCl ₂ and decorated with <i>in situ</i> grown NiCo ₂ O ₄ for high–performance asymmetric supercapacitors. New Journal of Chemistry, 2022, 46, 533-541.	1.4	12
4	Reshapable MXene/Graphene Oxide/Polyaniline Plastic Hybrids with Patternable Surfaces for Highly Efficient Solarâ€Ðriven Water Purification. Advanced Functional Materials, 2022, 32, .	7.8	79
5	Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors. Applied Surface Science, 2022, 598, 153765.	3.1	20
6	Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites. Nano-Micro Letters, 2022, 14, .	14.4	65
7	Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Composites Science and Technology, 2021, 201, 108492.	3.8	72
8	3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness. Nano-Micro Letters, 2021, 13, 22.	14.4	148
9	Coating of Wood with Fe ₂ O ₃ -Decorated Carbon Nanotubes by One-Step Combustion for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 22845-22854.	4.0	93
10	Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon, 2021, 178, 301-309.	5.4	36
11	Rational Design of Soft Yet Elastic Lamellar Graphene Aerogels via Bidirectional Freezing for Ultrasensitive Pressure and Bending Sensors. Advanced Functional Materials, 2021, 31, 2103703.	7.8	85
12	Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression. Journal of Materials Chemistry A, 2021, 9, 14859-14867.	5.2	79
13	2D Ferrous Ionâ€Crosslinked Ti ₃ C ₂ T <i>_x</i> MXene Aerogel Evaporators for Efficient Solar Steam Generation. Advanced Sustainable Systems, 2021, 5, 2100263.	2.7	30
14	Woodâ€Derived Monolithic Ultrathick Porous Carbon Electrodes Filled with Reduced Graphene Oxide for Highâ€Performance Supercapacitors with Ultrahigh Areal Capacitances. ChemElectroChem, 2021, 8, 4328-4336.	1.7	9
15	Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2020, 8, 1673-1678.	2.7	83
16	Multi-responsive nanocomposite membranes of cellulose nanocrystals and poly(N-isopropyl) Tj ETQq0 0 0 rgE	BT /Overlock	10

17	Flexible Poly(vinyl alcohol)–Polyaniline Hydrogel Film with Vertically Aligned Channels for an Integrated and Self-Healable Supercapacitor. ACS Applied Energy Materials, 2020, 3, 9408-9416.	2.5	59
18	Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 2020, 13, 3048-3056.	5.8	163

XIAOFENG LI

#	Article	IF	CITATIONS
19	Nanoâ€structured Hollow Carbon Materials from a Nonâ€isothermal Chemical Vapor Deposition of Polyphenols. Chinese Journal of Chemistry, 2020, 38, 590-594.	2.6	2
20	Bio-Inspired High Sensitivity of Moisture-Mechanical GO Films with Period-Gradient Structures. ACS Applied Materials & Interfaces, 2020, 12, 33104-33112.	4.0	25
21	Dualâ€Tunable Structural Colors from Liquidâ€Infused Aerogels. Advanced Optical Materials, 2020, 8, 1901825.	3.6	4
22	Hierarchical Transition Metal Oxide Arrays Grown on Grapheneâ€Based Fibers with Enhanced Interface by Thin Layer of Carbon toward Solidâ€State Asymmetric Supercapacitors. ChemElectroChem, 2020, 7, 1860-1868.	1.7	8
23	Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with Fe ₂ O ₃ Nanoparticles for Water Purification via Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 13229-13238.	4.0	92
24	Anisotropic CoFe ₂ O ₄ @Graphene Hybrid Aerogels with High Flux and Excellent Stability as Building Blocks for Rapid Catalytic Degradation of Organic Contaminants in a Flow-Type Setup. ACS Applied Materials & Interfaces, 2019, 11, 34222-34231.	4.0	40
25	In Situ Growth of Hierarchical Niâ€Mnâ€O Solid Solution on a Flexible and Porous Ni Electrode for Highâ€Performance Allâ€Solidâ€State Asymmetric Supercapacitors. Chemistry - A European Journal, 2019, 25, 15131-15140.	1.7	17
26	Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. Journal of Colloid and Interface Science, 2019, 555, 751-758.	5.0	99
27	Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. Journal of Colloid and Interface Science, 2019, 542, 54-62.	5.0	248
28	Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 152, 134-143.	5.4	85
29	High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. Journal of Materials Chemistry A, 2018, 6, 5880-5886.	5.2	138
30	Porous Graphene Films with Unprecedented Elastomeric Scaffold‣ike Folding Behavior for Foldable Energy Storage Devices. Advanced Materials, 2018, 30, e1707025.	11.1	102
31	Rapidly Responsive and Flexible Chiral Nematic Cellulose Nanocrystal Composites as Multifunctional Rewritable Photonic Papers with Eco-Friendly Inks. ACS Applied Materials & Interfaces, 2018, 10, 5918-5925.	4.0	99
32	Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities. ACS Applied Materials & Interfaces, 2018, 10, 17383-17392.	4.0	178
33	Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon, 2018, 126, 119-127.	5.4	189
34	Thermally Conductive Phase Change Composites Featuring Anisotropic Graphene Aerogels for Real‶ime and Fastâ€Charging Solarâ€Thermal Energy Conversion. Advanced Functional Materials, 2018, 28, 1805365.	7.8	260
35	Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon, 2018, 140, 624-633.	5.4	139
36	Phototriggered Selective Actuation and Selfâ€Oscillating in Dualâ€Phase Liquid Crystal Photonic Actuators. Advanced Optical Materials, 2018, 6, 1800131.	3.6	65

XIAOFENG LI

#	Article	IF	CITATIONS
37	One-Step Self-Assembly for Fabricating Asymmetric Particle Arrays and Templates for Bifunctional Systems. ACS Applied Nano Materials, 2018, 1, 3800-3806.	2.4	3
38	Hierarchical Porous Graphene/Ni Foam Composite with High Performances in Energy Storage Prepared by Flame Reduction of Graphene Oxide. ChemElectroChem, 2017, 4, 2243-2249.	1.7	12
39	Fiber-reinforced three-dimensional graphene aerogels for electrically conductive epoxy composites with enhanced mechanical properties. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1381-1390.	2.0	16
40	Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, 2016, 8, 12073-12080.	2.8	132
41	Fabrication of a compressible PU@RGO@MnO ₂ hybrid sponge for efficient removal of methylene blue with an excellent recyclability. RSC Advances, 2016, 6, 88897-88903.	1.7	15
42	Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies. ACS Applied Materials & Interfaces, 2016, 8, 33230-33239.	4.0	269
43	Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. Journal of Materials Chemistry A, 2016, 4, 18067-18074.	5.2	167
44	K ₂ Mn ₄ O ₈ /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions. Chemistry - A European Journal, 2016, 22, 3397-3404.	1.7	14
45	Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon, 2016, 100, 456-464.	5.4	237
46	Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2016, 8, 2297-2305.	4.0	75
47	Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon, 2016, 98, 50-57.	5.4	382
48	Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon, 2015, 82, 67-76.	5.4	292
49	Electrically conductive and super-tough polypropylene/carbon nanotube nanocomposites prepared by melt compounding. Composites Part B: Engineering, 2014, 56, 384-391.	5.9	54
50	In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon, 2014, 68, 653-661.	5.4	95
51	Thermally conductive and electrically insulating epoxy nanocomposites with silica-coated graphene. RSC Advances, 2014, 4, 15297-15303.	1.7	93
52	Folding and birefringence behavior of poly(vinyl alcohol) hydrogel film induced by freezing and thawing. RSC Advances, 2014, 4, 49861-49865.	1.7	6
53	The Effect of Surface Chemistry of Graphene on Cellular Structures and Electrical Properties of Polycarbonate Nanocomposite Foams. Industrial & Engineering Chemistry Research, 2014, 53, 4697-4703.	1.8	34
54	Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Composites Part B: Engineering, 2014, 67, 564-570.	5.9	74

XIAOFENG LI

#	Article	IF	CITATIONS
55	Simultaneous functionalization and reduction of graphene oxide with polyetheramine and its electrically conductive epoxy nanocomposites. Chinese Journal of Polymer Science (English Edition), 2014, 32, 975-985.	2.0	24
56	Thermally conductive phenol formaldehyde composites filled with carbon fillers. Materials Letters, 2014, 118, 212-216.	1.3	33
57	Simultaneous Improvement in Both Electrical Conductivity and Toughness of Polyamide 6 Nanocomposites Filled with Elastomer and Carbon Black Particles. Industrial & Engineering Chemistry Research, 2014, 53, 2270-2276.	1.8	33
58	Three dimensional graphene aerogels and their electrically conductive composites. Carbon, 2014, 77, 592-599.	5.4	220
59	Enhanced mechanical properties of poly(vinyl alcohol) nanocomposites with glucose-reduced graphene oxide. Materials Letters, 2013, 102-103, 15-18.	1.3	23
60	Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon, 2013, 59, 93-99.	5.4	103
61	Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. Journal of Materials Chemistry, 2012, 22, 14160.	6.7	428
62	Noncovalent fabrication and electrochemical capacitance of uniform core–shell structured polyaniline–carbon nanotube nanocomposite. RSC Advances, 2012, 2, 11887.	1.7	10
63	A facile approach to superhydrophobic coating from direct polymerization of "super glue― Soft Matter, 2011, 7, 4050.	1.2	14
64	A Bottom-Up Approach To Fabricate Patterned Surfaces with Asymmetrical TiO ₂ Microparticles Trapped in the Holes of Honeycomblike Polymer Film. Journal of the American Chemical Society, 2011, 133, 3736-3739.	6.6	65
65	Fabrication of honeycomb-patterned polyalkylcyanoacrylate films from monomer solution by breath figures method. Journal of Colloid and Interface Science, 2010, 350, 253-259.	5.0	28
66	Polymethylsilsesquioxane and hydroxylâ€ŧerminated polydimethylsiloxane composite: Vapor incubation before thermal curing. Journal of Applied Polymer Science, 2009, 111, 1454-1461.	1.3	6
67	Doubleâ€network hydrogel with high mechanical strength prepared from two biocompatible polymers. Journal of Applied Polymer Science, 2009, 112, 3063-3070.	1.3	66
68	Facile preparation of poly(ethyl α-cyanoacrylate) superhydrophobic and gradient wetting surfaces. Journal of Colloid and Interface Science, 2009, 340, 93-97.	5.0	29
69	Multi-membrane hydrogel fabricated by facile dynamic self-assembly. Soft Matter, 2009, 5, 1987.	1.2	211