

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087507/publications.pdf Version: 2024-02-01

μα Νιμ

#	Article	IF	CITATIONS
1	Degradable Vinyl Random Copolymers via Photocontrolled Radical Ringâ€Opening Cascade Copolymerization**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
2	Degradable Vinyl Random Copolymers via Photocontrolled Radical Ringâ€Opening Cascade Copolymerization**. Angewandte Chemie, 2022, 134, .	1.6	10
3	"Click handle―modified 2′-deoxy-2′-fluoroarabino nucleic acid as a synthetic genetic polymer capable o post-polymerization functionalization. Chemical Science, 2022, 13, 6873-6881.	f _{3.7}	2
4	Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Letters, 2021, 10, 243-257.	2.3	61
5	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, 7612-7617.	1.6	3
6	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7534-7539.	7.2	8
7	Frontispiz: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, .	1.6	0
8	Frontispiece: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, .	7.2	1
9	Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers**. Angewandte Chemie - International Edition, 2021, 60, 24800-24805.	7.2	12
10	Genome editor-directed inÂvivo library diversification. Cell Chemical Biology, 2021, 28, 1109-1118.	2.5	7
11	Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie, 2021, 133, 25004.	1.6	0
12	Just a click away. Nature Chemistry, 2021, 13, 820-821.	6.6	1
13	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	2.8	3
14	Frontispiece: Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
15	Frontispiz: Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie, 2021, 133, .	1.6	0
16	A General Approach to O â€Sulfation by a Sulfur(VI) Fluoride Exchange Reaction. Angewandte Chemie, 2020, 132, 18593-18599.	1.6	8
17	A General Approach to <i>O</i> â€Sulfation by a Sulfur(VI) Fluoride Exchange Reaction. Angewandte Chemie - International Edition, 2020, 59, 18435-18441.	7.2	31
18	Cascade Reactions in Chain-Growth Polymerization. Macromolecules, 2020, 53, 5655-5673.	2.2	20

Jia Niu

#	Article	IF	CITATIONS
19	Radical Ring-Closing/Ring-Opening Cascade Polymerization. Journal of the American Chemical Society, 2019, 141, 12493-12497.	6.6	42
20	Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chemical Biology, 2019, 14, 2652-2662.	1.6	38
21	PETâ€RAFT as a facile strategy for preparing functional lipid–polymer conjugates. Journal of Polymer Science Part A, 2018, 56, 1259-1268.	2.5	19
22	Facile Synthesis of Sequenceâ€Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angewandte Chemie, 2018, 130, 16426-16431.	1.6	33
23	Facile Synthesis of Sequenceâ€Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angewandte Chemie - International Edition, 2018, 57, 16194-16199.	7.2	136
24	Radical Cascade-Triggered Controlled Ring-Opening Polymerization of Macrocyclic Monomers. Journal of the American Chemical Society, 2018, 140, 10402-10406.	6.6	45
25	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	2.2	41
26	Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nature Chemistry, 2017, 9, 537-545.	6.6	353
27	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	1.5	38
28	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	2.3	65
29	Analytical Devices Based on Direct Synthesis of DNA on Paper. Analytical Chemistry, 2016, 88, 725-731.	3.2	38
30	Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nature Chemistry, 2013, 5, 282-292.	6.6	193
31	DNA Ligase-Mediated Translation of DNA Into Densely Functionalized Nucleic Acid Polymers. Journal of the American Chemical Society, 2013, 135, 98-101.	6.6	65
32	Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 2008, 18, 621-633.	6.7	1,560
33	Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir, 2008, 24, 11988-11994.	1.6	63
34	Reversible Disulfide Cross-Linking in Layer-by-Layer Films:Â Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007, 23, 6377-6384.	1.6	49
35	To Adjust Wetting Properties of Organic Surface by In Situ Photoreaction of Aromatic Azide. Langmuir, 2007, 23, 1253-1257.	1.6	27
36	Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Advanced Materials, 2007, 19, 2257-2261.	11.1	278

#	Article	IF	CITATIONS
37	Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction. Chemistry of Materials, 2006, 18, 1365-1368.	3.2	138
38	Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:  From Superhydrophilicity to Superhydrophobicity. Chemistry of Materials, 2005, 17, 6177-6180.	3.2	97