Jia Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087507/publications.pdf

Version: 2024-02-01

304743 377865 3,521 38 22 34 citations h-index g-index papers 43 43 43 4729 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 2008, 18, 621-633.	6.7	1,560
2	Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nature Chemistry, 2017, 9, 537-545.	13.6	353
3	Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Advanced Materials, 2007, 19, 2257-2261.	21.0	278
4	Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nature Chemistry, 2013, 5, 282-292.	13.6	193
5	Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction. Chemistry of Materials, 2006, 18, 1365-1368.	6.7	138
6	Facile Synthesis of Sequenceâ€Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angewandte Chemie - International Edition, 2018, 57, 16194-16199.	13.8	136
7	Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:  From Superhydrophilicity to Superhydrophobicity. Chemistry of Materials, 2005, 17, 6177-6180.	6.7	97
8	DNA Ligase-Mediated Translation of DNA Into Densely Functionalized Nucleic Acid Polymers. Journal of the American Chemical Society, 2013, 135, 98-101.	13.7	65
9	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	4.8	65
10	Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir, 2008, 24, 11988-11994.	3.5	63
11	Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Letters, 2021, 10, 243-257.	4.8	61
12	Reversible Disulfide Cross-Linking in Layer-by-Layer Films:Â Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release. Langmuir, 2007, 23, 6377-6384.	3.5	49
13	Radical Cascade-Triggered Controlled Ring-Opening Polymerization of Macrocyclic Monomers. Journal of the American Chemical Society, 2018, 140, 10402-10406.	13.7	45
14	Radical Ring-Closing/Ring-Opening Cascade Polymerization. Journal of the American Chemical Society, 2019, 141, 12493-12497.	13.7	42
15	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	4.1	41
16	Analytical Devices Based on Direct Synthesis of DNA on Paper. Analytical Chemistry, 2016, 88, 725-731.	6.5	38
17	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	3.0	38
18	Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chemical Biology, 2019, 14, 2652-2662.	3.4	38

#	Article	IF	CITATIONS
19	Degradable Vinyl Random Copolymers via Photocontrolled Radical Ringâ€Opening Cascade Copolymerization**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
20	Facile Synthesis of Sequenceâ€Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angewandte Chemie, 2018, 130, 16426-16431.	2.0	33
21	A General Approach to <i>O</i> à€Sulfation by a Sulfur(VI) Fluoride Exchange Reaction. Angewandte Chemie - International Edition, 2020, 59, 18435-18441.	13.8	31
22	To Adjust Wetting Properties of Organic Surface by In Situ Photoreaction of Aromatic Azide. Langmuir, 2007, 23, 1253-1257.	3.5	27
23	Cascade Reactions in Chain-Growth Polymerization. Macromolecules, 2020, 53, 5655-5673.	4.8	20
24	PETâ€RAFT as a facile strategy for preparing functional lipid–polymer conjugates. Journal of Polymer Science Part A, 2018, 56, 1259-1268.	2.3	19
25	Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers**. Angewandte Chemie - International Edition, 2021, 60, 24800-24805.	13.8	12
26	Degradable Vinyl Random Copolymers via Photocontrolled Radical Ringâ€Opening Cascade Copolymerization**. Angewandte Chemie, 2022, 134, .	2.0	10
27	A General Approach to O â€Sulfation by a Sulfur(VI) Fluoride Exchange Reaction. Angewandte Chemie, 2020, 132, 18593-18599.	2.0	8
28	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7534-7539.	13.8	8
29	Genome editor-directed inÂvivo library diversification. Cell Chemical Biology, 2021, 28, 1109-1118.	5.2	7
30	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, 7612-7617.	2.0	3
31	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	6.1	3
32	"Click handle―modified 2′-deoxy-2′-fluoroarabino nucleic acid as a synthetic genetic polymer capable of post-polymerization functionalization. Chemical Science, 2022, 13, 6873-6881.	^f 7.4	2
33	Frontispiece: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
34	Just a click away. Nature Chemistry, 2021, 13, 820-821.	13.6	1
35	Frontispiz: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, .	2.0	О
36	Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie, 2021, 133, 25004.	2.0	0

#	Article	IF	CITATIONS
37	Frontispiece: Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
38	Frontispiz: Metathesis Cascadeâ€Triggered Depolymerization of Enyne Selfâ€Immolative Polymers. Angewandte Chemie, 2021, 133, .	2.0	0