
Martin Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087375/publications.pdf Version: 2024-02-01

ΜΑΡΤΙΝ CARROLL

#	Article	IF	CITATIONS
1	The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 2017, 23, 1369-1376.	30.7	971
2	Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discovery, 2017, 7, 716-735.	9.4	582
3	Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nature Medicine, 2016, 22, 792-799.	30.7	322
4	Clonal Selection with RAS Pathway Activation Mediates Secondary Clinical Resistance to Selective FLT3 Inhibition in Acute Myeloid Leukemia. Cancer Discovery, 2019, 9, 1050-1063.	9.4	288
5	Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.	1.4	138
6	CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Science Translational Medicine, 2017, 9, .	12.4	116
7	The Oncogene eIF4E: Using Biochemical Insights to Target Cancer. Journal of Interferon and Cytokine Research, 2013, 33, 227-238.	1.2	84
8	Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Advances, 2019, 3, 1581-1585.	5.2	57
9	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	8.5	56
10	<i>DNMT3A</i> Mutational Status Affects the Results of Dose-Escalated Induction Therapy in Acute Myelogenous Leukemia. Clinical Cancer Research, 2015, 21, 1614-1620.	7.0	50
11	Targeted Enhancer Activation by a Subunit of the Integrator Complex. Molecular Cell, 2018, 71, 103-116.e7.	9.7	50
12	Dexamethasone in hyperleukocytic acute myeloid leukemia. Haematologica, 2018, 103, 988-998.	3.5	49
13	Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Advances, 2019, 3, 1061-1072.	5.2	42
14	Aberrant splicing in B-cell acute lymphoblastic leukemia. Nucleic Acids Research, 2018, 46, 11357-11369.	14.5	39
15	Cytokines increase engraftment of human acute myeloid leukemia cells in immunocompromised mice but not engraftment of human myelodysplastic syndrome cells. Haematologica, 2018, 103, 959-971.	3.5	36
16	Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML. Cancer Discovery, 2019, 9, 872-889.	9.4	36
17	Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood, 2021, 138, 1465-1480.	1.4	34
18	Eltrombopag Modulates Reactive Oxygen Species and Decreases Acute Myeloid Leukemia Cell Survival. PLoS ONE, 2015, 10, e0126691.	2.5	33

#	Article	lF	CITATIONS
19	Clinical Utility of Next-Generation Sequencing for Oncogenic Mutations in Patients with Acute Myeloid Leukemia Undergoing Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 1961-1967.	2.0	30
20	Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. Journal of Clinical Investigation, 2020, 130, 3637-3653.	8.2	30
21	Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers. Blood, 2020, 136, 698-714.	1.4	28
22	Alternative splicing redefines landscape of commonly mutated genes in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
23	An Open-Label Study of CEP-701 in Patients with JAK2 V617F-Positive PV and ET: Update of 39 Enrolled Patients Blood, 2009, 114, 753-753.	1.4	22
24	A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia. JCI Insight, 2016, 1, .	5.0	19
25	A Multicenter, Open Label Phase I/II Study of CEP701 (Lestaurtinib) in Adults with Myelofibrosis; a Report On Phase I: A Study of the Myeloproliferative Disorders Research Consortium (MPD-RC) Blood, 2009, 114, 754-754.	1.4	19
26	BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood, 2021, 137, 812-825.	1.4	18
27	CEP-701 Is a JAK2 Inhibitor Which Attenuates JAK2/STAT5 Signaling Pathway and the Proliferation of Primary Cells from Patients with Myeloproliferative Disorders Blood, 2006, 108, 3594-3594.	1.4	15
28	Specific MicroRNA Deregulated in Myleoproliferative Neoplasm Are Regulated by JAK2V617F and May Contribute to Aberrant Hematopoiesis Blood, 2009, 114, 965-965.	1.4	15
29	Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Investigational New Drugs, 2018, 36, 657-666.	2.6	12
30	Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 1106-1127.	9.4	12
31	A Modified Integrated Genetic Model for Risk Prediction in Younger Patients with Acute Myeloid Leukemia. PLoS ONE, 2016, 11, e0153016.	2.5	10
32	Validation of a clinical assay of multiâ€locus <scp>DNA</scp> methylation for prognosis of newly diagnosed <scp>AML</scp> . American Journal of Hematology, 2017, 92, E14-E15.	4.1	10
33	Microsphere-Based Multiplex Analysis of DNA Methylation in Acute Myeloid Leukemia. Journal of Molecular Diagnostics, 2014, 16, 207-215.	2.8	9
34	Validation of DNA Methylation to Predict Outcome in Acute Myeloid Leukemia by Use of xMELP. Clinical Chemistry, 2015, 61, 249-258.	3.2	9
35	Classes of ITD Predict Outcomes in AML Patients Treated with FLT3 Inhibitors. Clinical Cancer Research, 2019, 25, 573-583.	7.0	8
36	Signaling mechanisms that regulate ex vivo survival of human acute myeloid leukemia initiating cells. Blood Cancer Journal, 2017, 7, 636.	6.2	7

#	Article	IF	CITATIONS
37	Genomic and evolutionary portraits of disease relapse in acute myeloid leukemia. Leukemia, 2021, 35, 2688-2692.	7.2	7
38	DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biology, 2021, 22, 295.	8.8	6
39	mTOR Activation Is Necessary for Primary AML Cells to Survive Genotoxic Stress Blood, 2004, 104, 91-91.	1.4	5
40	In Vivo Efficacy of PI3K Pathway Signaling Inhibition for Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Blood, 2013, 122, 2672-2672.	1.4	5
41	BCL6 Attenuates DNA Damage Sensing in Normal and Malignant B-Cells by Directly Repressing ATR Blood, 2005, 106, 157-157.	1.4	4
42	Intrinsic Requirement of MicroRNA In Hox-Based Leukemia Initiating Cell Maintenance. Blood, 2010, 116, 4192-4192.	1.4	4
43	ASXL1 Mutations Promote Myeloid Transformation Through Inhibition of PRC2-Mediated Gene Repression. Blood, 2011, 118, 405-405.	1.4	4
44	Adaptive Reactivation of Signaling Pathways As a Novel Mechanism of Resistance to JAK Inhibitors in Ph-like ALL. Blood, 2016, 128, 755-755.	1.4	4
45	CML Progenitor Cells Have Chromsomal Instability and Display Increased DNA Damage at DNA Fragile Sites Blood, 2005, 106, 1989-1989.	1.4	3
46	A Novel Orally Available Parthenolide Analog Selectively Eradicates AML Stem and Progenitor Cells Blood, 2006, 108, 237-237.	1.4	3
47	Acute Myeloid Leukemia Stem Cells Cells Are Rare and Heterogeneous in Human Acute Myeloid Leukemia Blood, 2009, 114, 390-390.	1.4	3
48	Redundant JAK, SRC and PI3 Kinase Signaling Pathways Regulate Cell Survival in Human Ph-like ALL Cell Lines and Primary Cells. Blood, 2017, 130, 717-717.	1.4	3
49	Targeted detection and quantitation of histone modifications from 1,000 cells. PLoS ONE, 2020, 15, e0240829.	2.5	3
50	DNA Methyltransferases Demonstrate Reduced Activity against Arabinosylcytosine: Implications for Epigenetic Instability in Acute Myeloid Leukemia. Biochemistry, 2017, 56, 2166-2169.	2.5	2
51	Interpretative differences of combined cytogenetic and molecular profiling highlights differences between MRC and ELN classifications of AML. Cancer Genetics, 2021, 256-257, 68-76.	0.4	2
52	A Critical BCL6-Related Feedback Loop Explains the Unusual Biological Features of Germinal Center B-Cells and Their Malignant Transformation into B-Cell Lymphomas Blood, 2006, 108, 224-224.	1.4	2
53	Metformin for Therapeutic Intervention In Acute Myeloid Leukemia. Blood, 2010, 116, 4351-4351.	1.4	2
54	Cytosine Arabinoside Chemotherapy Does Not Enrich For Leukemic Stem Cells In Xenotransplantation Model Of Human Acute Myeloid Leukemia. Blood, 2013, 122, 1651-1651.	1.4	2

#	Article	IF	CITATIONS
55	Toll-Like Receptor Agonists Induce Immunogeneicity and Apoptosis of Acute Myeloid Leukemia Cells Blood, 2007, 110, 160-160.	1.4	2
56	Signaling, Drugs and Apoptosis of Myeloma Cells. Cancer Biology and Therapy, 2004, 3, 195-196.	3.4	1
57	BCR/ABL Expression Increases the Formation of Chromosomal Translocations after DNA Damage Blood, 2004, 104, 713-713.	1.4	1
58	Acute Myeloid Leukemia Cells Require STAT5 for Survival Blood, 2005, 106, 1616-1616.	1.4	1
59	Systemic Inflammatory Response Syndrome (SIRS) as Predictor of Severe Sepsis (SS) in Hospitalized Patients (pts) with Hematologic Malignancies Blood, 2007, 110, 633-633.	1.4	1
60	Intrinsic Resistance to JAK2 Inhibition in Myelofibrosis. Blood, 2011, 118, 2825-2825.	1.4	1
61	A Feasibility Study of Rapamycin with Hyper-CVAD Chemotherapy in Adults with Acute Lymphoblastic Leukemia (ALL) and Other Aggressive Lymphoid Malignancies and Evaluation of mTOR Signaling Using Phosphoflow. Blood, 2011, 118, 4245-4245.	1.4	1
62	Epigenetic Deregulation In Relapsed Acute Myeloid Leukemia. Blood, 2013, 122, 2499-2499.	1.4	1
63	Beyond Directed Therapeutics: Are Two Drugs Always Better than One?. Cancer Biology and Therapy, 2002, 1, 683-684.	3.4	Ο
64	When cancer and immunology meet. Immunological Reviews, 2015, 263, 2-5.	6.0	0
65	Microsphere-Based Assessment of DNA Methylation for AML Prognosis. Methods in Molecular Biology, 2017, 1633, 125-136.	0.9	0
66	A common protein target for an uncommon subtype of AML. Blood, 2020, 136, 377-378.	1.4	0
67	mTOR Inhibitors Induce Apoptosis and Inhibit Growth of Primary Adult Human ALL in Xenograft and Tissue Culture Models Blood, 2004, 104, 2748-2748.	1.4	Ο
68	Enhanced Survival of MDS Progenitor Cells under Hypoxic Conditions Blood, 2005, 106, 3427-3427.	1.4	0
69	Philadelphia Chromosome (Ph') Negative, MLL-Rearranged AML Arising in a Patient Treated with Imatinib for CML Blood, 2005, 106, 4880-4880.	1.4	0
70	A Predictive Model for Cytogenetic Risk Group in Elderly AML: The Penn Cytogenetic Surrogate Score (PCSS) Blood, 2006, 108, 4446-4446.	1.4	0
71	Mitochondrial Proteome from Human Peripheral Blood Cells Blood, 2006, 108, 4193-4193.	1.4	0
72	Phosphoproteomic Analysis of Primary Acute Myeloid Leukemia Cells Reveals Redundant Roles for Src Family Kinases in AML Survival. Blood, 2008, 112, 2650-2650.	1.4	0

#	Article	IF	CITATIONS
73	The Effects of BCR/ABL on DNA Damage and Repair Are Dependent on Apoptosis Competence. Blood, 2008, 112, 4216-4216.	1.4	Ο
74	A Robust Xenotransplantation Model for Acute Myeloid Leukemia. Blood, 2008, 112, 2939-2939.	1.4	0
75	Single-Cell Pharmacodynamic Monitoring of S6 Ribosomal Protein in AML Blasts During a Clinical Trial Combining the mTOR Inhibitor Sirolimus with Mitoxantrone, Etoposide, and Cytarabine Chemotherapy Blood, 2009, 114, 413-413.	1.4	0
76	MicroRNA Diagnostic Signature of Myelodysplastic Syndrome Blood, 2009, 114, 1763-1763.	1.4	0
77	SHIP1 Is a Novel Tumor Suppressor in Late-Stage Myelodysplastic Syndromes and Is Silenced by Mir-210 and Mir-155 Blood, 2009, 114, 3824-3824.	1.4	Ο
78	Epigenetic Signaling Is Required for HoxA9-Based Leukemic Transformation Blood, 2009, 114, 3966-3966.	1.4	0
79	Mir-9 Is Aberrantly Expressed In MPN Patients and Accelerates Erythropoietic Cell Growth and Differentiation. Blood, 2010, 116, 1983-1983.	1.4	0
80	Ara-C Treatment of Acute Myeloid Leukemia Does Not Lead to Prolonged Enrichment of Stem Cells or a Cell Cycle Arrest. Blood, 2010, 116, 2178-2178.	1.4	0
81	Metabolic Capability to Induce the Pasteur Effect Mediates Sensitivity of Human Leukemic Cells to Metformin. Blood, 2011, 118, 2601-2601.	1.4	0
82	MiR-101 Down Regulates Neuromedin U Expression During Human Erythropoiesis and Negatively Regulates Erythroid Expansion,. Blood, 2011, 118, 3160-3160.	1.4	0
83	Neuromedin U Peptide Activates STAT5 and S6 in a JAK-2 Dependent Manner and Promotes Erythroid Cell Growth in Primary Erythroid Progenitor Cells. Blood, 2012, 120, 1241-1241.	1.4	0
84	Angiocidin Induces Differentiation of Acute Myeloid Leukemia (AML) Cells in Vitro and Reduces Human AML Burden in the Bone Marrow of Xenotransplanted NSG Mice Blood, 2012, 120, 2618-2618.	1.4	0
85	Serum 2-Hydroxyglutarate Levels Predict Isocitrate Dehydrogenase Mutations and Clinical Outcome in Acute Myeloid Leukemia Blood, 2012, 120, 2481-2481.	1.4	Ο
86	Integrated Immunological Analysis of the Bone Marrow Tumor Microenvironment in Myeloproliferative Neoplasms to Determine Potential Efficacy of Immune Checkpoint Blockade. Blood, 2015, 126, 2766-2766.	1.4	0
87	A Clinical Measure of DNA Methylation Predicts Outcome in De Novo AML. Blood, 2015, 126, 2591-2591.	1.4	0
88	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0
89	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0
90	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0

Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829. 90

#	Article	IF	CITATIONS
91	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		Ο
92	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0
93	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		Ο
94	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0
95	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0