
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087287/publications.pdf Version: 2024-02-01

FEDDY HACEN

#	Article	IF	CITATIONS
1	Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for <i>Fungi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6241-6246.	7.1	4,012
2	Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 2002, 28, 141-155.	1.8	772
3	A rare genotype of <i>Cryptococcus gattii</i> caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17258-17263.	7.1	698
4	Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genetics and Biology, 2015, 78, 16-48.	2.1	590
5	First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrobial Resistance and Infection Control, 2016, 5, 35.	4.1	535
6	Consensus multi-locus sequence typing scheme for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> . Medical Mycology, 2009, 47, 561-570.	0.7	408
7	First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. Journal of Infection, 2016, 73, 369-374.	3.3	340
8	New Clonal Strain of <i>Candida auris</i> , Delhi, India. Emerging Infectious Diseases, 2013, 19, 1670-1673.	4.3	320
9	Multidrug-resistant endemic clonal strain of Candida auris in India. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 919-926.	2.9	303
10	High terbinafine resistance in <i>Trichophyton interdigitale</i> isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses, 2018, 61, 477-484.	4.0	237
11	An outbreak due to <i>Candida auris</i> with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses, 2018, 61, 498-505.	4.0	236
12	Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 5898-5906.	3.2	212
13	The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12980-12985.	7.1	180
14	Clonal Expansion and Emergence of Environmental Multiple-Triazole-Resistant Aspergillus fumigatus Strains Carrying the TR34/L98H Mutations in the cyp51A Gene in India. PLoS ONE, 2012, 7, e52871.	2.5	180
15	Phylogeography and evolutionary patterns in <i>Sporothrix</i> spanning more than 14 000 human and animal case reports. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 35, 1-20.	4.4	176
16	Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. MBio, 2015, 6, e00536.	4.1	171
17	Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genetics and Biology, 2008, 45, 400-421.	2.1	163
18	Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Diversity, 2014, 67, 1-10.	12.3	152

#	Article	IF	CITATIONS
19	Diversidad del complejo de especies Cryptococcus neoformans-Cryptococcus gattii. Revista Iberoamericana De Micologia, 2008, 25, S4-S12.	0.9	134
20	Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 2021, 98, 100116.	7.2	134
21	Autochthonous and Dormant <i>Cryptococcus gattii</i> Infections in Europe. Emerging Infectious Diseases, 2012, 18, 1618-1624.	4.3	132
22	Cryptococcus neoformans-Cryptococcus gattii Species Complex: an International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Amphotericin B and Flucytosine. Antimicrobial Agents and Chemotherapy, 2012, 56, 3107-3113.	3.2	129
23	Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clinical Microbiology and Infection, 2016, 22, 277.e1-277.e9.	6.0	127
24	Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the <i>Cryptococcus</i> Genus. MSphere, 2017, 2, .	2.9	124
25	Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis. PLoS Pathogens, 2015, 11, e1004884.	4.7	123
26	Unique hybrids between the fungal pathogensCryptococcus neoformansandCryptococcus gattii. FEMS Yeast Research, 2006, 6, 599-607.	2.3	122
27	Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS ONE, 2013, 8, e71148.	2.5	122
28	Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. Journal of Antimicrobial Chemotherapy, 2014, 69, 2979-2983.	3.0	122
29	<i>In Vitro</i> Antifungal Susceptibilities and Amplified Fragment Length Polymorphism Genotyping of a Worldwide Collection of 350 Clinical, Veterinary, and Environmental <i>Cryptococcus gattii</i> Isolates. Antimicrobial Agents and Chemotherapy, 2010, 54, 5139-5145.	3.2	121
30	Exploring azole antifungal drug resistance in <i>Aspergillus fumigatus</i> with special reference to resistance mechanisms. Future Microbiology, 2014, 9, 697-711.	2.0	118
31	Azole-resistant Aspergillus fumigatus with the environmental TR46/Y121F/T289A mutation in India. Journal of Antimicrobial Chemotherapy, 2014, 69, 555-557.	3.0	113
32	Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and <i>In Vivo</i> Impact in Infected Galleria mellonella Larvae. Antimicrobial Agents and Chemotherapy, 2015, 59, 6581-6587.	3.2	106
33	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	2.9	105
34	A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. MBio, 2017, 8, .	4.1	104
35	Global guideline for the diagnosis and management of the endemic mycoses: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology. Lancet Infectious Diseases, The, 2021, 21, e364-e374.	9.1	99
36	Environmental study of azoleâ€resistant <i><scp>A</scp>spergillus fumigatus</i> with TR ₃₄ /L98H mutations in the <i>cyp51</i> A gene in <scp>I</scp> ran. Mycoses, 2013, 56, 659-663.	4.0	98

#	Article	IF	CITATIONS
37	Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Scientific Reports, 2017, 7, 45631.	3.3	96
38	High prevalence of azole resistance in <i>Aspergillus fumigatus</i> isolates from high-risk patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 2894-2898.	3.0	92
39	AIDS Patient Death Caused by NovelCryptococcus neoformans×C.gattiiHybrid. Emerging Infectious Diseases, 2008, 14, 1105-1108.	4.3	91
40	Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Frontiers in Microbiology, 2015, 06, 428.	3.5	89
41	Global molecular epidemiology and genetic diversity of <i>Fusarium</i> , a significant emerging group of human opportunists from 1958 to 2015. Emerging Microbes and Infections, 2016, 5, 1-11.	6.5	89
42	Molecular characterization of cyanobacterial diversity in a shallow eutrophic lake. Environmental Microbiology, 2005, 7, 365-377.	3.8	87
43	Identification and typing of the emerging pathogen <i>Candida auris</i> by matrixâ€assisted laser desorption ionisation time of flight mass spectrometry. Mycoses, 2016, 59, 535-538.	4.0	86
44	Cryptococcus neoformans Shows a Remarkable Genotypic Diversity in Brazil. Journal of Clinical Microbiology, 2004, 42, 1356-1359.	3.9	83
45	Geographically Structured Populations of Cryptococcus neoformans Variety grubii in Asia Correlate with HIV Status and Show a Clonal Population Structure. PLoS ONE, 2013, 8, e72222.	2.5	83
46	Interaction Between Genetic Background and the Mating-Type Locus in Cryptococcus neoformans Virulence Potential. Genetics, 2005, 171, 975-983.	2.9	82
47	Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: Is it de novo or environmentally acquired?. Journal of Global Antimicrobial Resistance, 2015, 3, 69-74.	2.2	81
48	Beach sand and the potential for infectious disease transmission: observations and recommendations. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 101-120.	0.8	80
49	Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiology Reviews, 2019, 43, 517-547.	8.6	77
50	Passive Surveillance for Azole-Resistant <i>Aspergillus fumigatus</i> , United States, 2011–2013. Emerging Infectious Diseases, 2014, 20, 1498-1503.	4.3	76
51	Low Diversity Cryptococcus neoformans Variety grubii Multilocus Sequence Types from Thailand Are Consistent with an Ancestral African Origin. PLoS Pathogens, 2011, 7, e1001343.	4.7	74
52	Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	72
53	Global Population Genetic Analysis of Aspergillus fumigatus. MSphere, 2017, 2, .	2.9	71
54	Nonrandom Distribution of Azole Resistance across the Global Population of Aspergillus fumigatus. MBio, 2019, 10, .	4.1	71

#	Article	IF	CITATIONS
55	Taxonomy and epidemiology of <l>Mucor irregularis</l> , agent of chronic cutaneous mucormycosis. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2013, 30, 48-56.	4.4	69
56	<i>Ceratonia siliqua</i> (carob) trees as natural habitat and source of infection by <i>Cryptococcus gattii</i> in the Mediterranean environment. Medical Mycology, 2012, 50, 67-73.	0.7	67
57	The first cases of <i>Candida auris</i> candidaemia in Oman. Mycoses, 2017, 60, 569-575.	4.0	66
58	Occurrence of triazole-resistant Aspergillus fumigatus with TR34/L98H mutations in outdoor and hospital environment in Kuwait. Environmental Research, 2014, 133, 20-26.	7.5	64
59	Zoonotic transmission of <i>Cryptococcus neoformans</i> from a magpie to an immunocompetent patient. Journal of Internal Medicine, 2005, 257, 385-388.	6.0	63
60	Intercountry Transfer of Triazole-Resistant Aspergillus fumigatus on Plant Bulbs. Clinical Infectious Diseases, 2017, 65, 147-149.	5.8	63
61	Temperate Climate Niche for <i>Cryptococcus gattii</i> in Northern Europe. Emerging Infectious Diseases, 2012, 18, 172-174.	4.3	62
62	Susceptibility and Diversity in the Therapy-Refractory Genus Scedosporium. Antimicrobial Agents and Chemotherapy, 2014, 58, 5877-5885.	3.2	61
63	High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue?. Journal of Medical Microbiology, 2016, 65, 468-475.	1.8	60
64	Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Diversity, 2012, 52, 197-207.	12.3	59
65	Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for the Cryptococcus neoformans-Cryptococcus gattii Species Complex Using the CLSI M27-A3 Broth Microdilution Method. Antimicrobial Agents and Chemotherapy, 2015, 59, 666-668.	3.2	58
66	Environmental distribution of <i>Cryptococcus neoformans</i> and <i>C. gattii</i> around the Mediterranean basin. FEMS Yeast Research, 2016, 16, fow045.	2.3	57
67	First Report of Candidemia Clonal Outbreak Caused by Emerging Fluconazole-Resistant Candida parapsilosis Isolates Harboring Y132F and/or Y132F+K143R in Turkey. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	57
68	Attack, Defend and Persist: How the Fungal Pathogen Candida auris was Able to Emerge Globally in Healthcare Environments. Mycopathologia, 2019, 184, 353-365.	3.1	56
69	Emergence of Candida auris in Brazil in a COVID-19 Intensive Care Unit. Journal of Fungi (Basel,) Tj ETQq1 1 0.78	4314 rgBT	- /Qyerlock 1
70	Cryptococcus randhawai sp. nov., a novel anamorphic basidiomycetous yeast isolated from tree trunk hollow of Ficus religiosa (peepal tree) from New Delhi, India. Antonie Van Leeuwenhoek, 2010, 97, 253-259.	1.7	55
71	Concomitant occurrence of itraconazole-resistant and -susceptible strains of Aspergillus fumigatus in routine cultures. Journal of Antimicrobial Chemotherapy, 2015, 70, 412-415.	3.0	55
72	<i>Candida haemulonii</i> species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses. Emerging Microbes and Infections, 2016, 5, 1-12.	6.5	55

#	Article	IF	CITATIONS
73	Prevalence and diversity of filamentous fungi in the airways of cystic fibrosis patients – A Dutch, multicentre study. Journal of Cystic Fibrosis, 2019, 18, 221-226.	0.7	55
74	Identification of Genotypically Diverse Cryptococcus neoformans and Cryptococcus gattii Isolates by Luminex xMAP Technology. Journal of Clinical Microbiology, 2007, 45, 1874-1883.	3.9	54
75	Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Medical Mycology, 2020, 58, 766-773.	0.7	54
76	Extensive Genetic Diversity within the Dutch Clinical Cryptococcus neoformans Population. Journal of Clinical Microbiology, 2012, 50, 1918-1926.	3.9	53
77	Molecular Epidemiology and In-Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Isolates in Delhi, India: Evidence of Genetic Diversity by Amplified Fragment Length Polymorphism and Microsatellite Typing. PLoS ONE, 2015, 10, e0118997.	2.5	53
78	Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses, 2018, 61, 885-894.	4.0	52
79	Constructing Level-2 Phylogenetic Networks from Triplets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6, 667-681.	3.0	51
80	<i>Cryptococcus gattii</i> Risk for Tourists Visiting Vancouver Island, Canada. Emerging Infectious Diseases, 2007, 13, 178-179.	4.3	49
81	Microsatellite Genotyping Clarified Conspicuous Accumulation of Candida parapsilosis at a Cardiothoracic Surgery Intensive Care Unit. Journal of Clinical Microbiology, 2012, 50, 3422-3426.	3.9	49
82	Invasive Infections Due to <i>Trichosporon</i> : Species Distribution, Genotyping, and Antifungal Susceptibilities from a Multicenter Study in China. Journal of Clinical Microbiology, 2019, 57, .	3.9	49
83	Molecular characterization and <i>in vitro</i> antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses, 2014, 57, 97-107.	4.0	48
84	Home Environment as a Source of Life-Threatening Azole-Resistant <i>Aspergillus fumigatus</i> in Immunocompromised Patients: Table 1 Clinical Infectious Diseases, 2017, 64, 76-78.	5.8	48
85	Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: a prospective multicentre study in Germany. Journal of Antimicrobial Chemotherapy, 2018, 73, 2047-2053.	3.0	47
86	The global epidemiology of emerging Histoplasma species in recent years. Studies in Mycology, 2020, 97, 100095.	7.2	47
87	Molecular epidemiology and <i>in vitro</i> antifungal susceptibility testing of 108 clinical <i>Cryptococcus neoformans sensu lato</i> and <i>Cryptococcus gattii sensu lato</i> isolates from Denmark. Mycoses, 2016, 59, 576-584.	4.0	46
88	Simple, Low-Cost Detection of Candida parapsilosis Complex Isolates and Molecular Fingerprinting of Candida orthopsilosis Strains in Kuwait by ITS Region Sequencing and Amplified Fragment Length Polymorphism Analysis. PLoS ONE, 2015, 10, e0142880.	2.5	44
89	Fundamental niche prediction of the pathogenic yeasts <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> in Europe. Environmental Microbiology, 2017, 19, 4318-4325.	3.8	44
90	Evaluation of Molecular Epidemiology, Clinical Characteristics, Antifungal Susceptibility Profiles, and Molecular Mechanisms of Antifungal Resistance of Iranian Candida parapsilosis Species Complex Blood Isolates. Frontiers in Cellular and Infection Microbiology, 2020, 10, 206.	3.9	44

#	Article	lF	CITATIONS
91	Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clinical Microbiology and Infection, 2016, 22, 570.e1-570.e9.	6.0	43
92	Routine identification of Nocardia species by MALDI-TOF mass spectrometry. Diagnostic Microbiology and Infectious Disease, 2017, 87, 7-10.	1.8	43
93	YEAST PANEL multiplex PCR for identification of clinically important yeast species: stepwise diagnostic strategy, useful for developing countries. Diagnostic Microbiology and Infectious Disease, 2019, 93, 112-119.	1.8	42
94	Resistance of Asian Cryptococcus neoformans Serotype A Is Confined to Few Microsatellite Genotypes. PLoS ONE, 2012, 7, e32868.	2.5	42
95	Antifungal susceptibility, serotyping, and genotyping of clinical <i>Cryptococcus neoformans</i> isolates collected during 18 years in a single institution in Madrid, Spain. Medical Mycology, 2010, 48, 942-948.	0.7	41
96	Activated dormant <i>Cryptococcus gattii</i> infection in a Dutch tourist who visited Vancouver Island (Canada): a molecular epidemiological approach. Medical Mycology, 2010, 48, 528-531.	0.7	41
97	Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species. Antimicrobial Agents and Chemotherapy, 2015, 59, 7882-7887.	3.2	41
98	Candida nivariensis Isolated from an Indonesian Human Immunodeficiency Virus-Infected Patient Suffering from Oropharyngeal Candidiasis. Journal of Clinical Microbiology, 2008, 46, 388-391.	3.9	40
99	DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biology, 2016, 120, 265-278.	2.5	40
100	Tuberculosis/cryptococcosis co-infection in China between 1965 and 2016. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	39
101	Low Level of Antifungal Resistance in Iranian Isolates of Candida glabrata Recovered from Blood Samples in a Multicenter Study from 2015 to 2018 and Potential Prognostic Values of Genotyping and Sequencing of PDR1. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	39
102	The Fungal PCR Initiative's evaluation of in-house and commercial Pneumocystis jirovecii qPCR assays: Toward a standard for a diagnostics assay. Medical Mycology, 2020, 58, 779-788.	0.7	39
103	Itraconazole, Voriconazole, and Posaconazole CLSI MIC Distributions for Wild-Type and Azole-Resistant Aspergillus fumigatus Isolates. Journal of Fungi (Basel, Switzerland), 2018, 4, 103.	3.5	38
104	Novel multiplex real-time quantitative PCR detecting system approach for direct detection of <i>Candida auris</i> and its relatives in spiked serum samples. Future Microbiology, 2019, 14, 33-45.	2.0	38
105	Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genetics and Biology, 2019, 129, 16-29.	2.1	37
106	Species Distinction in the Trichophyton rubrum Complex. Journal of Clinical Microbiology, 2019, 57, .	3.9	35
107	Molecular Identification, Genotypic Diversity, Antifungal Susceptibility, and Clinical Outcomes of Infections Caused by Clinically Underrated Yeasts, Candida orthopsilosis, and Candida metapsilosis: An Iranian Multicenter Study (2014–2019). Frontiers in Cellular and Infection Microbiology, 2019, 9, 264.	3.9	34
108	Successful Allogenic Stem Cell Transplantation in Patients with Inherited CARD9 Deficiency. Journal of Clinical Immunology, 2019, 39, 462-469.	3.8	34

#	Article	IF	CITATIONS
109	Fungicide-driven alterations in azole-resistant <i>Aspergillus fumigatus</i> are related to vegetable crops in Colombia, South America. Mycologia, 2019, 111, 217-224.	1.9	34
110	Low level of antifungal resistance of <i>Candida glabrata</i> blood isolates in Turkey: Fluconazole minimum inhibitory concentration and <i>FKS</i> mutations can predict therapeutic failure. Mycoses, 2020, 63, 911-920.	4.0	34
111	Molecular epidemiology and antifungal susceptibility of Serbian <i>Cryptococcus neoformans</i> isolates. Mycoses, 2014, 57, 380-387.	4.0	33
112	Microsatellite typing and susceptibilities of serial Cryptococcus neoformansisolates from Cuban patients with recurrent cryptococcal meningitis. BMC Infectious Diseases, 2010, 10, 289.	2.9	32
113	In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Qatar between 2014 – 2015. BMC Microbiology, 2015, 15, 121.	3.3	31
114	Cryptococcus tetragattii as a major cause of cryptococcal meningitis among HIV-infected individuals in Harare, Zimbabwe. Journal of Infection, 2016, 72, 745-752.	3.3	31
115	Ecoepidemiology of Cryptococcus gattii in Developing Countries. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314	rgBT_/Ove	rloçk 10 Tf 50
116	Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review. Emerging Microbes and Infections, 2016, 5, 1-7.	6.5	29
117	Cryptococcosis in patients with diabetes mellitus <scp>II</scp> in mainland China: 1993â€2015. Mycoses, 2017, 60, 706-713.	4.0	29
118	In vitro antifungal activity of amphotericin B and 11 comparators against <i>Aspergillus terreus</i> species complex. Mycoses, 2018, 61, 134-142.	4.0	29
119	Low-Cost Tetraplex PCR for the Global Spreading Multi-Drug Resistant Fungus, Candida auris and Its Phylogenetic Relatives. Frontiers in Microbiology, 2018, 9, 1119.	3.5	29
120	Genetically related micafungin-resistant <i>Candida parapsilosis</i> blood isolates harbouring novel mutation R658G in hotspot 1 of Fks1p: a new challenge?. Journal of Antimicrobial Chemotherapy, 2021, 76, 418-422.	3.0	29
121	Investigation of the basis of virulence in serotype A strains of Cryptococcus neoformans from apparently immunocompetent individuals. Current Genetics, 2004, 46, 92-102.	1.7	28
122	Promiscuous mitochondria in <i>Cryptococcus gattii</i> . FEMS Yeast Research, 2009, 9, 489-503.	2.3	28
123	Internal validation of <scp>CPS</scp> ^{â,,¢} <scp>MONODOSE</scp> CanAur dtecâ€ <scp>qPCR</scp> kit following the <scp>UNE</scp> / <scp>EN ISO</scp> / <scp>IEC</scp> 17025:2005 for detection of the emerging yeast <i>Candida auris</i> . Mycoses, 2018, 61, 877-884.	4.0	28
124	Comparison of 21-Plex PCR and API 20C AUX, MALDI-TOF MS, and rDNA Sequencing for a Wide Range of Clinically Isolated Yeast Species: Improved Identification by Combining 21-Plex PCR and API 20C AUX as an Alternative Strategy for Developing Countries. Frontiers in Cellular and Infection Microbiology, 2019, 9, 21.	3.9	28
125	Performance of Two Novel Chromogenic Media for the Identification of Multidrug-Resistant Candida auris Compared with Other Commercially Available Formulations. Journal of Clinical Microbiology, 2021, 59, .	3.9	28
126	Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe. Journal of Medical Microbiology, 2016, 65, 1281-1288.	1.8	28

#	Article	IF	CITATIONS
127	Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the Modimucor study group. Medical Mycology, 2021, 59, 126-138.	0.7	27
128	Triazole phenotypes and genotypic characterization of clinical <i>Aspergillus fumigatus</i> isolates in China. Emerging Microbes and Infections, 2017, 6, 1-6.	6.5	26
129	Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia. Antimicrobial Resistance and Infection Control, 2017, 6, 93.	4.1	26
130	The Search for the Natural Habitat of Cryptococcus gattii. Mycopathologia, 2010, 170, 209-211.	3.1	25
131	Molecular Diagnostics of Arthroconidial Yeasts, Frequent Pulmonary Opportunists. Journal of Clinical Microbiology, 2018, 56, .	3.9	25
132	Global Molecular Diversity of the Halotolerant Fungus Hortaea werneckii. Life, 2018, 8, 31.	2.4	25
133	In vitro antifungal susceptibilities and molecular typing of sequentially isolated clinical Cryptococcus neoformans strains from Croatia. Journal of Medical Microbiology, 2011, 60, 1487-1495.	1.8	24
134	Molecular characterisation and antifungal susceptibility of clinical Cryptococcus deuterogattii (AFLP6/VGII) isolates from Southern Brazil. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 1803-1810.	2.9	24
135	Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is <i>Aspergillus</i> ?. Medical Mycology, 2017, 55, myw093.	0.7	24
136	Growth and Mating of Cryptococcus neoformans var. grubii on Woody Debris. Microbial Ecology, 2009, 57, 757-765.	2.8	23
137	Pitfalls in Serological Diagnosis ofCryptococcus gattiiInfections. Medical Mycology, 2015, 53, 874-879.	0.7	23
138	Geographically predominant genotypes of Aspergillus terreus species complex in Austria: s microsatellite typing study. Clinical Microbiology and Infection, 2016, 22, 270-276.	6.0	23
139	High-resolution fingerprinting of Candida parapsilosis isolates suggests persistence and transmission of infections among neonatal intensive care unit patients in Kuwait. Scientific Reports, 2019, 9, 1340.	3.3	23
140	Meningitis caused by <i>Filobasidium uniguttulatum</i> : case report and overview of the literature. Mycoses, 2012, 55, 105-109.	4.0	22
141	First environmental isolation of <i>Cryptococcus gattii</i> , genotype AFLP5, from India and a global review. Mycoses, 2013, 56, 222-228.	4.0	22
142	Coxiella burnetii Genotypes in Iberian Wildlife. Microbial Ecology, 2016, 72, 890-897.	2.8	22
143	Cenome-wide mapping using new AFLP markers to explore intraspecific variation among pathogenic Sporothrix species. PLoS Neglected Tropical Diseases, 2020, 14, e0008330.	3.0	22
144	Global Spread of Human Chromoblastomycosis Is Driven by Recombinant Cladophialophora carrionii and Predominantly Clonal Fonsecaea Species. PLoS Neglected Tropical Diseases, 2015, 9, e0004004.	3.0	21

#	Article	IF	CITATIONS
145	Environmental distribution of <i>Cryptococcus</i> species and some other yeastâ€kke fungi in India. Mycoses, 2018, 61, 305-313.	4.0	21
146	Eighty Years of Mycopathologia: A Retrospective Analysis of Progress Made in Understanding Human and Animal Fungal Pathogens. Mycopathologia, 2018, 183, 859-877.	3.1	21
147	Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris. Journal of Fungi (Basel,) Tj ETQq1 1 0.78431	4 rg₿₮ /Ov	verlæak 10 Tf
148	Cryptococcus gattii Infection in an Immunocompetent Patient from Southern Italy. Mycopathologia, 2012, 174, 87-92.	3.1	20
149	Simple, Low-Cost Molecular Assays for TR34/L98H Mutations in the cyp51A Gene for Rapid Detection of Triazole-Resistant Aspergillus fumigatus Isolates. Journal of Clinical Microbiology, 2014, 52, 2223-2227.	3.9	20
150	Molecular characterization by MLVA of Coxiella burnetii strains infecting dairy cows and goats of north-eastern Italy. Microbes and Infection, 2015, 17, 776-781.	1.9	20
151	Coxiella burnetii DNA detected in domestic ruminants and wildlife from Portugal. Veterinary Microbiology, 2015, 180, 136-141.	1.9	20
152	High prevalence of the A2058T macrolide resistance-associated mutation in Mycoplasma genitalium strains from the Netherlands. Journal of Antimicrobial Chemotherapy, 2017, 72, 1529-1530.	3.0	20
153	Breakthrough candidemia after the introduction of broad spectrum antifungal agents: A 5-year retrospective study. Medical Mycology, 2018, 56, 406-415.	0.7	20
154	Epidemiology and aetiologies of cryptococcal meningitis in Africa, 1950–2017: protocol for a systematic review. BMJ Open, 2018, 8, e020654.	1.9	20
155	Cryptococcosis and Cryptococcus. Mycopathologia, 2021, 186, 729-731.	3.1	20
156	Ferrets as Sentinels of the Presence of Pathogenic Cryptococcus Species in the Mediterranean Environment. Mycopathologia, 2014, 178, 145-151.	3.1	19
157	Whole Genome-Based Amplified Fragment Length Polymorphism Analysis Reveals Genetic Diversity in Candida africana. Frontiers in Microbiology, 2017, 8, 556.	3.5	19
158	Polyphasic Discrimination of Trichophyton tonsurans and T. equinum from Humans and Horses. Mycopathologia, 2020, 185, 113-122.	3.1	19
159	One year prospective survey of azole resistance in Aspergillus fumigatus at a French cystic fibrosis reference centre: prevalence and mechanisms of resistance. Journal of Antimicrobial Chemotherapy, 2019, 74, 1884-1889.	3.0	19
160	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
161	Cryptococcosis and tuberculosis co-infection in mainland China. Emerging Microbes and Infections, 2016, 5, 1-3.	6.5	18
162	Constructing Level-2 Phylogenetic Networks from Triplets. Lecture Notes in Computer Science, 2008, , 450-462.	1.3	18

#	Article	IF	CITATIONS
163	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	4.0	18
164	An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Review of Molecular Diagnostics, 2022, 22, 169-184.	3.1	18
165	<i>cyp51A</i> Mutations, Extrolite Profiles, and Antifungal Susceptibility in Clinical and Environmental Isolates of the Aspergillus viridinutans Species Complex. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
166	Exploring genetic diversity, population structure, and phylogeography in <i>Paracoccidioides</i> species using AFLP markers. Studies in Mycology, 2021, 100, 100129-100129.	7.2	17
167	Cryptococcal meningitis due to <i>Cryptococcus neoformans</i> genotype <scp>AFLP</scp> 1/ <scp>VNI</scp> in Iran: a review of the literature. Mycoses, 2015, 58, 689-693.	4.0	16
168	Molecular epidemiology of environmental Cryptococcus species isolates based on amplified fragment length polymorphism. Journal De Mycologie Medicale, 2018, 28, 599-605.	1.5	16
169	Macrolide-Resistant <i>Mycoplasma genitalium</i> in Southeastern Region of the Netherlands, 2014–2017. Emerging Infectious Diseases, 2019, 25, 1297-1303.	4.3	16
170	Reactivation of a Cryptococcus gattii infection in a cheetah (Acinonyx jubatus) held in the National Zoo, Havana, Cuba. Mycoses, 2011, 54, e889-e892.	4.0	15
171	Fatal Cryptococcus gattii genotype AFLP5 infection in an immunocompetent Cuban patient. Medical Mycology Case Reports, 2013, 2, 48-51.	1.3	15
172	Cryptococcus and Cryptococcosis in Cuba. A minireview. Mycoses, 2014, 57, 707-717.	4.0	15
173	Interspecies discrimination of A. fumigatus and siblings A. lentulus and A. felis of the Aspergillus section Fumigati using the AsperGenius® assay. Diagnostic Microbiology and Infectious Disease, 2017, 87, 247-252.	1.8	15
174	Postâ€influenzal triazoleâ€resistant aspergillosis following allogeneic stem cell transplantation. Mycoses, 2018, 61, 570-575.	4.0	15
175	Molecular Characterization and Antifungal Susceptibility Testing of Sequentially Obtained Clinical Cryptococcus deneoformans and Cryptococcus neoformans Isolates from Ljubljana, Slovenia. Mycopathologia, 2018, 183, 371-380.	3.1	15
176	Intraspecific Diversity and Taxonomy of Emmonsia crescens. Mycopathologia, 2020, 185, 613-627.	3.1	15
177	Molecular characterization and antifungal susceptibility testing of Cryptococcus neoformans sensu stricto from southern Brazil. Journal of Medical Microbiology, 2018, 67, 560-569.	1.8	15
178	Environmental sampling of Ceratonia siliqua (carob) trees in Spain reveals the presence of the rare Cryptococcus gattii genotype AFLP7/VGIV. Revista Iberoamericana De Micologia, 2015, 32, 269-272.	0.9	14
179	Direct molecular versus culture-based assessment of Gram-positive cocci in biopsies of patients with major abscesses and diabetic foot infections. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1885-1892.	2.9	14
180	Comparative genotyping and phenotyping of Aspergillus fumigatus isolates from humans, dogs and the environment. BMC Microbiology, 2018, 18, 118.	3.3	14

#	Article	IF	CITATIONS
181	The High-Quality Complete Genome Sequence of the Opportunistic Fungal Pathogen Candida vulturna CBS 14366T. Mycopathologia, 2019, 184, 731-734.	3.1	14
182	A new duplex PCR assay for the rapid screening of mating-type idiomorphs of pathogenic Sporothrix species. Fungal Biology, 2021, 125, 834-843.	2.5	14
183	Trends in the molecular epidemiology and population genetics of emerging <i>Sporothrix</i> species. Studies in Mycology, 2021, 100, 100131-100131.	7.2	14
184	Airway persistence by the emerging multiâ€azoleâ€resistant <i>Rasamsonia argillacea</i> complex in cystic fibrosis. Mycoses, 2018, 61, 665-673.	4.0	13
185	Genotypic diversity and antifungal susceptibility of <i>Cryptococcus neoformans</i> isolates from paediatric patients in China. Mycoses, 2019, 62, 171-180.	4.0	13
186	Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes. IMA Fungus, 2021, 12, 18.	3.8	13
187	Case report: A fatal case of cryptococcosis in an immunocompetent patient due to Cryptococcus deuterogattii (AFLP6/VGII). JMM Case Reports, 2018, 5, e005168.	1.3	13
188	Chromoblastomycosis in Latin America and the Caribbean: Epidemiology over the past 50 years. Medical Mycology, 2021, 60, .	0.7	13
189	Diagnostic value of serum pneumococcal DNA load during invasive pneumococcal infections. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1119-1124.	2.9	12
190	Genotypic diversity of Pseudomonas aeruginosa in cystic fibrosis siblings in Qatar using AFLP fingerprinting. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 265-271.	2.9	12
191	Molecular characterization of Cryptococcus gattii genotype AFLP6/VGII isolated from woody debris of divi-divi (Caesalpinia coriaria), Bonaire, Dutch Caribbean. Revista Iberoamericana De Micologia, 2014, 31, 193-196.	0.9	12
192	Genotyping of clinical and environmental <i>Aspergillus flavus</i> isolates from Iran using microsatellites. Mycoses, 2016, 59, 220-225.	4.0	12
193	In vitro antifungal susceptibility profiles of Cryptococcus species isolated from HIV-associated cryptococcal meningitis patients in Zimbabwe. Diagnostic Microbiology and Infectious Disease, 2016, 86, 289-292.	1.8	12
194	Disseminated Cryptococcus deuterogattii (AFLP6/VGII) infection in an Arabian horse from Dubai, United Arab Emirates. Revista Iberoamericana De Micologia, 2017, 34, 229-232.	0.9	12
195	Incidence and spectrum of yeast species isolated from the oral cavity of Iranian patients suffering from hematological malignancies. Journal of Oral Microbiology, 2019, 11, 1601061.	2.7	12
196	Clinical insights and epidemiology of central nervous system infection due to Cryptococcus neoformans/gattii species complexes: A prospective study from South India. Medical Mycology, 2020, 58, 600-608.	0.7	12
197	Genotypic diversity in clinical and environmental isolates ofCryptococcus neoformansfrom India using multilocus microsatellite and multilocus sequence typing. Mycoses, 2020, 63, 284-293.	4.0	12
198	A multi-centre prospective evaluation of the Check-Direct ESBL Screen for BD MAX as a rapid molecular screening method for extended-spectrum beta-lactamase-producing Enterobacteriaceae rectal carriage. Journal of Hospital Infection, 2017, 97, 247-253.	2.9	11

#	Article	IF	CITATIONS
199	Unequivocal identification of an underestimated opportunistic yeast species, Cyberlindnera fabianii, and its close relatives using a dual-function PCR and literature review of published cases. Medical Mycology, 2019, 57, 833-840.	0.7	11
200	Molecular characterization and antifungal susceptibility testing of Candida nivariensis from blood samples – an Iranian multicentre study and a review of the literature. Journal of Medical Microbiology, 2019, 68, 770-777.	1.8	11
201	A Spotlight on Sporothrix and Sporotrichosis. Mycopathologia, 2022, 187, 407-411.	3.1	11
202	<i>In Vitro</i> Activities of Eight Antifungal Drugs against a Global Collection of Genotyped Exserohilum Isolates. Antimicrobial Agents and Chemotherapy, 2015, 59, 6642-6645.	3.2	10
203	Cryptococcal Meningitis Presenting as a Complication in HIV-infected Children. Pediatric Infectious Disease Journal, 2016, 35, 979-980.	2.0	10
204	Development and evaluation of a multiplex qPCR assay for rapid diagnostics of emerging sporotrichosis. Transboundary and Emerging Diseases, 2022, 69, .	3.0	10
205	Molecular characterization and antifungal susceptibility of Cryptococcus neoformans strains collected from a single institution in Lima, Peru. Revista Iberoamericana De Micologia, 2015, 32, 88-92.	0.9	9
206	Comparison of biotyping methods as alternative identification tools to molecular typing of pathogenic <i><scp>C</scp>ryptococcus</i> species in sub‣aharan Africa. Mycoses, 2016, 59, 151-156.	4.0	9
207	Candida infanticola and Candida spencermartinsiae yeasts: Possible emerging species in cancer patients. Microbial Pathogenesis, 2018, 115, 353-357.	2.9	9
208	Neglecting Genetic Diversity Hinders Timely Diagnosis of <i>Cryptococcus</i> Infections. Journal of Clinical Microbiology, 2021, 59, .	3.9	9
209	Successful treatment of Cryptococcus gattii neurocryptococcosis in a 5-year-old immunocompetent child from the French Guiana Amazon region. Revista Iberoamericana De Micologia, 2012, 29, 210-213.	0.9	8
210	Discovery of a sexual cycle in <i>Talaromyces amestolkiae</i> . Mycologia, 2016, 108, 70-79.	1.9	8
211	Case report: chronic relapsing cryptococcal meningitis in a patient with low mannose-binding lectin and a low naÃ ⁻ ve CD4 cell count. BMC Infectious Diseases, 2019, 19, 846.	2.9	8
212	First fungemia case due to environmental yeast <i>Wickerhamomyces myanmarensis</i> : detection by multiplex qPCR and antifungal susceptibility. Future Microbiology, 2019, 14, 267-274.	2.0	8
213	Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Scientific Reports, 2022, 12, 5391.	3.3	8
214	Triazole Resistance Is Still Not Emerging in Aspergillus fumigatus Isolates Causing Invasive Aspergillosis in Brazilian Patients. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	7
215	Primary cutaneous cryptococcosis during infliximab therapy. Dermatologic Therapy, 2017, 30, e12405.	1.7	7
216	Differential In Vitro Cytokine Induction by the Species of Cryptococcus gattii Complex. Infection and Immunity, 2018, 86, .	2.2	7

#	Article	IF	CITATIONS
217	A novel diagnosis scoring model to predict invasive pulmonary aspergillosis in the intensive care unit. Journal of King Abdulaziz University, Islamic Economics, 2019, 40, 140-146.	1.1	7
218	Puzzling paracoccidioidomycosis: Factors associated with the severity of Paracoccidioides lutzii infections. International Journal of Infectious Diseases, 2021, 107, 284-290.	3.3	7
219	Classification of yeast cells from image features to evaluate pathogen conditions. , 2007, , .		6
220	Cryptococcus and Trichosporon spp. are susceptible in vitro to branched histidine- and lysine-rich peptides (BHKPs). Journal of Antimicrobial Chemotherapy, 2011, 66, 1649-1652.	3.0	6
221	Two cases of sporotrichosis of the right upper extremity in right-handed patients with diabetes mellitus. Revista Iberoamericana De Micologia, 2016, 33, 38-42.	0.9	6
222	Microsatellite Genotyping of Candida parapsilosis Clinical Isolates. Current Medical Mycology, 2017, 3, 15-20.	0.8	6
223	Donor-Derived Transmission of <i>Cryptococcus gattii</i> sensu lato in Kidney Transplant Recipients. Emerging Infectious Diseases, 2020, 26, 1329-1331.	4.3	6
224	Nanopore Genome Sequencing and Variant Analysis of the Susceptible Candida auris Strain L1537/2020, Salvador, Brazil. Mycopathologia, 2021, 186, 883-887.	3.1	6
225	Candidemia among Hospitalized Pediatric Patients Caused by Several Clonal Lineages of Candida parapsilosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 183.	3.5	6
226	Cutaneous disseminated sporotrichosis in immunocompetent patient: Case report and literature review. Medical Mycology Case Reports, 2022, 36, 31-34.	1.3	6
227	Isolation of Cryptococcus gattii from a Castanopsis argyrophylla tree hollow (Mai-Kaw), Chiang Mai, Thailand. Mycopathologia, 2017, 182, 365-370.	3.1	5
228	Presence of pathogenic cryptococci on trees situated in two recreational areas in South Africa. Fungal Ecology, 2017, 30, 101-111.	1.6	5
229	Genotyping of Aspergillus fumigatus in Formalin-Fixed Paraffin-Embedded Tissues and Serum Samples From Patients With Invasive Aspergillosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 377.	3.9	5
230	The mitochondrial intergenic regions nad1-cob and cob-rps3 as molecular identification tools for pathogenic members of the genus Cryptococcus. FEMS Yeast Research, 2019, 19, .	2.3	5
231	Species borderlines in Fusarium exemplified by F. circinatum/F. subglutinans. Fungal Genetics and Biology, 2019, 132, 103262.	2.1	5
232	The prevalence and diversity of fungi in respiratory samples of cystic fibrosis patients – a Dutch, nationwide, prospective, multicentre study. , 2018, , .		5
233	Domestic Birds as Source of Cryptococcus deuterogattii (AFLP6/VGII): Potential Risk for Cryptococcosis. Mycopathologia, 2022, 187, 103-111.	3.1	5
234	Mucormycosis in Children With Hematologic Malignancies: A Case Series and Review of the Literature. Pediatric Infectious Disease Journal, 2022, 41, e369-e376.	2.0	5

#	Article	IF	CITATIONS
235	Cryptococcus Typing: What is in a Name?. International Journal of Gerontology, 2009, 3, 88.	0.6	4
236	Multiple intracranial abscesses due to <i>Cryptococcus neoformans</i> : an unusual clinical feature in an immunocompetent patient and a short review of reported cases. Medical Mycology, 2010, 48, 398-401.	0.7	4
237	Molecular epidemiology and in vitro antifungal susceptibility of <i>Trichophyton schoenleinii,</i> agent of tinea capitis favosa. Mycoses, 2019, 62, 466-474.	4.0	4
238	Renal transplant patient survives a donor-derived abdominal invasive mucormycosis (Lichtheimia) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
239	Successful Isavuconazole Salvage Therapy for a Cryptococcus deuterogattii (AFLP6/VGII) Disseminated Infection in a European Immunocompetent Patient. Mycopathologia, 2021, 186, 507-518.	3.1	4
240	Molecular typing and antifungal susceptibility study of Aspergillus spp. in intensive care unit (ICU) patients in Indonesia. Journal of Infection in Developing Countries, 2021, 15, 1014-1020.	1.2	4
241	Detection and Control of Fungal Outbreaks. Mycopathologia, 2020, 185, 741-745.	3.1	4
242	Detecting Virulent Cells of Cryptococcus Neoformans Yeast: Clustering Experiments. , 2006, , .		3
243	Bacteroides fragilis in biopsies of patients with major abscesses and diabetic foot infections: direct molecular versus culture-based detection. Diagnostic Microbiology and Infectious Disease, 2016, 85, 263-265.	1.8	3
244	Development of a High-Resolution Multi-Locus Microsatellite Typing Method for <i>Colletotrichum gloeosporioides</i> . Mycobiology, 2017, 45, 401-408.	1.7	3
245	Comment on: T2Candida MR as a predictor of outcome in patients with suspected invasive candidiasis starting empirical antifungal treatment: a prospective pilot study. Journal of Antimicrobial Chemotherapy, 2019, 74, 532-533.	3.0	3
246	Paracoccidioidomycosis due to P lutzii : The importance of neutrophil/lymphocyte ratio in the symptomatic and asymptomatic phases in severe cases. Mycoses, 2021, 64, 874-881.	4.0	3
247	Cryptococcus gattii genotype AFLP6/VGII meningoencephalitis in an immunocompetent Filipino male in Kuwait: activation of a dormant infection. JMM Case Reports, 2015, 2, .	1.3	3
248	Occurrence of Cryptococcus neoformans and other yeast-like fungi in environmental sources in Bonaire (Dutch Caribbean). Germs, 2020, 10, 195-200.	1.3	3
249	Molecular Tools for Candida auris Identification and Typing. Methods in Molecular Biology, 2022, , 33-41.	0.9	3
250	A new way of recycling lead batteries in Norway. Journal of Power Sources, 1999, 78, 270-272.	7.8	2

251 Cryptococcus bacillisporus causing cryptococcoma of the beak of an African grey parrot (Psittacus) Tj ETQq1 1 0.784314 rgBT /Overlo

²⁵² Multi-locus sequence typing reveals genotypic similarity in Nigerian Cryptococcus neoformans AFLP1/VNI of environmental and clinical origin. Journal of Medical Microbiology, 2021, 70, .

1.8 2

#	Article	IF	CITATIONS
253	Nanopore Genome Sequencing and Variant Analysis of the Susceptible Candida auris Strain L1537/2020, Salvador, Brazil. Mycopathologia, 2021, 186, 883-887.	3.1	2
254	Automated Feature Selection for Pathogen Yeast Cryptococcus Neoformans. , 2007, , .		1
255	Development and Analysis of qPCR for the Identification of Arthroconidial Yeasts of the Genus Magnusiomyces. Mycopathologia, 2021, 186, 41-51.	3.1	1
256	Multiple intracranial abscesses due to Cryptococcus neoformans: an unusual clinical feature in an immunocompetent patient and a short review of reported cases. Medical Mycology, 2010, 48, 1-5.	0.7	1
257	De novo Nanopore Genome Sequencing of the Clinical Diutina catenulata Type-strain CBS565. Mycopathologia, 2022, , 1.	3.1	1
258	Chromoblastomycosis-Leprosy Co-Infection in Central West Brazil. Presentation of Three Cases and Literature Review. Mycopathologia, 2022, 187, 363-374.	3.1	1
259	Young ISHAM – Uniting Young Scientists from all over the World. Current Fungal Infection Reports, 2012, 6, 346-348.	2.6	0
260	Urban Environment. , 2016, , 147-155.		0
261	Round Granulomatous Lesions in a Young Girl: A Quiz. Acta Dermato-Venereologica, 2021, 101, adv00464.	1.3	0
262	Mycopathologia 2020: Legacy and Change to Remain Relevant for Content, Creation, and Communication. Mycopathologia, 2021, 186, 155-162.	3.1	0
263	New Clonal Strain of <i>Candida auris</i> , Delhi, India. Emerging Infectious Diseases, 2013, 19, .	4.3	0
264	Primary cutaneous cryptococcosis and a surprise finding in a chronically immunosuppressed patient. JMM Case Reports, 2014, 1, .	1.3	0
265	Invasive pulmonary aspergillosis in immunocompetent patients acquired during renovation in a chest institute. , 2017, , .		0
266	ID-CARD: A clade-specific molecular assay for the detection of 25 Candida spp. causing candidemia based on antifungal susceptibility patterns and in vitro testing of the antifungal activity of a synthetic antimicrobial peptide derived from human lactoferrin (hLF1-11) Access Microbiology, 2021, 3,	0.5	0
267	Title is missing!. , 2020, 14, e0008330.		0
268	Title is missing!. , 2020, 14, e0008330.		0
269	Title is missing!. , 2020, 14, e0008330.		0
270	Title is missing!. , 2020, 14, e0008330.		0