
Raquel Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HMGA1 Has Predictive Value in Response to Chemotherapy in Gastric Cancer. Current Oncology, 2022, 29, 56-67.	0.9	5
2	Prognostic significance of MUC2, CDX2 and SOX2 in stage II colorectal cancer patients. BMC Cancer, 2021, 21, 359.	1.1	9
3	CD44v6 High Membranous Expression Is a Predictive Marker of Therapy Response in Gastric Cancer Patients. Biomedicines, 2021, 9, 1249.	1.4	3
4	Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of CDX2 and its negative correlation with SOX2. Laboratory Investigation, 2020, 100, 120-134.	1.7	26
5	The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Frontiers in Cell and Developmental Biology, 2020, 8, 442.	1.8	29
6	A panel of intestinal differentiation markers (CDX2, GPA33, and LI-cadherin) identifies gastric cancer patients with favourable prognosis. Gastric Cancer, 2020, 23, 811-823.	2.7	16
7	A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin. Cancers, 2020, 12, 495.	1.7	29
8	MEX3A regulates <i>Lgr5</i> ⁺ stem cell maintenance in the developing intestinal epithelium. EMBO Reports, 2020, 21, e48938.	2.0	26
9	Expression and Clinical Relevance of SOX9 in Gastric Cancer. Disease Markers, 2019, 2019, 1-11.	0.6	18
10	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	1.5	18
11	Prognostic, predictive, and pharmacogenomic assessments of <scp>CDX</scp> 2 refine stratification of colorectal cancer. Molecular Oncology, 2018, 12, 1639-1655.	2.1	40
12	Mechanisms of regulation of normal and metaplastic intestinal differentiation. Histology and Histopathology, 2018, 33, 523-532.	0.5	2
13	Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression. Nucleic Acids Research, 2017, 45, e123-e123.	6.5	18
14	RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends in Cancer, 2017, 3, 506-528.	3.8	528
15	Mid-Esophagus Columnar Metaplasia: What Is the Biopathogenic Pathway?. International Journal of Surgical Pathology, 2017, 25, 262-265.	0.4	4
16	The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget, 2017, 8, 10238-10254.	0.8	60
17	Intestinal Metaplasia. Encyclopedia of Pathology, 2017, , 404-409.	0.0	0
18	Dynamics of SOX2 and CDX2 Expression in Barrett's Mucosa. Disease Markers, 2016, 2016, 1-7.	0.6	12

RAQUEL ALMEIDA

#	Article	IF	CITATIONS
19	A Mouse Intra-Intestinal Infusion Model and its Application to the Study of Nanoparticle Distribution. Frontiers in Physiology, 2016, 7, 579.	1.3	7
20	Reflections on <scp>MUC</scp> 1 glycoprotein: the hidden potential of isoforms in carcinogenesis. Apmis, 2016, 124, 913-924.	0.9	17
21	Effect of MUC1/β-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncology Letters, 2016, 12, 1811-1817.	0.8	10
22	Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation. Scientific Reports, 2016, 6, 34860.	1.6	26
23	Detection of glycoâ€mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Molecular Oncology, 2015, 9, 503-512.	2.1	50
24	CDX2 homeoprotein is involved in the regulation of ST6GalNAc-I gene in intestinal metaplasia. Laboratory Investigation, 2015, 95, 718-727.	1.7	12
25	Differentiation reprogramming in gastric intestinal metaplasia and dysplasia: role of <scp>SOX</scp> 2 and <scp>CDX</scp> 2. Histopathology, 2015, 66, 343-350.	1.6	32
26	Modified-Chitosan/siRNA Nanoparticles Downregulate Cellular CDX2 Expression and Cross the Gastric Mucus Barrier. PLoS ONE, 2014, 9, e99449.	1.1	23
27	Immunohistochemical molecular phenotypes of gastric cancer based on SOX2 and CDX2 predict patient outcome. BMC Cancer, 2014, 14, 753.	1.1	33
28	MEX-3 proteins: recent insights on novel post-transcriptional regulators. Trends in Biochemical Sciences, 2013, 38, 477-479.	3.7	34
29	CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Research, 2013, 41, 3986-3999.	6.5	94
30	Determinants of gastric CDX2 expression. European Journal of Cancer Prevention, 2012, 21, 532-540.	0.6	2
31	Association between environmental factors and CDX2 expression in gastric cancer patients. European Journal of Cancer Prevention, 2012, 21, 423-431.	0.6	8
32	Identification of new cancer biomarkers based on aberrant mucin glycoforms by <i>in situ</i> proximity ligation. Journal of Cellular and Molecular Medicine, 2012, 16, 1474-1484.	1.6	67
33	Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends in Molecular Medicine, 2012, 18, 555-563.	3.5	65
34	Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis, 2012, 33, 1985-1992.	1.3	56
35	CDX2 autoregulation in human intestinal metaplasia of the stomach: impact on the stability of the phenotype. Gut, 2011, 60, 290-298.	6.1	52
36	Pathophysiology of intestinal metaplasia of the stomach: emphasis on <i>CDX2</i> regulation. Biochemical Society Transactions, 2010, 38, 358-363.	1.6	20

RAQUEL ALMEIDA

#	Article	IF	CITATIONS
37	Infection-associated FUT2 (Fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconjugate Journal, 2010, 27, 61-68.	1.4	29
38	Schistosoma haematobium: Identification of new estrogenic molecules with estradiol antagonistic activity and ability to inactivate estrogen receptor in mammalian cells. Experimental Parasitology, 2010, 126, 526-535.	0.5	36
39	MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology, 2010, 20, 199-206.	1.3	93
40	Relevance of high virulenceHelicobacter pyloristrains and futility of CDX2 expression for predicting intestinal metaplasia after eradication of infection. Scandinavian Journal of Gastroenterology, 2010, 45, 828-834.	0.6	14
41	Differential expression of α-2,3-sialyltransferases and α-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 80-89.	1.2	109
42	CDX2 expression is induced by <i>Helicobacter pylori</i> in AGS cells. Scandinavian Journal of Gastroenterology, 2009, 44, 124-125.	0.6	18
43	Expression of UDP- <i>N</i> -acetyl-D-galactosamine: Polypeptide <i>N</i> -acetylgalactosaminyltransferase-6 in Gastric Mucosa, Intestinal Metaplasia, and Gastric Carcinoma. Journal of Histochemistry and Cytochemistry, 2009, 57, 79-86.	1.3	58
44	<i>CDX2</i> promoter methylation is not associated with mRNA expression. International Journal of Cancer, 2009, 125, 1739-1742.	2.3	13
45	Juvenile polyps have gastric differentiation with MUC5AC expression and downregulation of CDX2 and SMAD4. Histochemistry and Cell Biology, 2009, 131, 765-772.	0.8	12
46	Prevalence of Helicobacter pylori infection, chronic gastritis, and intestinal metaplasia in Mozambican dyspeptic patients. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 454, 153-160.	1.4	18
47	Chronic Atrophic Gastritis, Intestinal Metaplasia, <i>Helicobacter pylori</i> Virulence, <i>IL1RN</i> Polymorphisms, and Smoking in Dyspeptic Patients from Mozambique and Portugal. Helicobacter, 2009, 14, 306-308.	1.6	2
48	Key elements of the BMP/SMAD pathway co″ocalize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. Journal of Pathology, 2008, 215, 411-420.	2.1	58
49	Expression of Lea in gastric cancer cell lines depends on FUT3 expression regulated by promoter methylation. Cancer Letters, 2006, 242, 191-197.	3.2	37
50	Metaplasia — A Transdifferentiatlon Process that Facilitates Cancer Development: The Model of Gastric Intestinal Metaplasia. Critical Reviews in Oncogenesis, 2006, 12, 3-26.	0.2	39
51	OCT-1 is over-expressed in intestinal metaplasia and intestinal gastric carcinomas and binds to, but does not transactivate, CDX2 in gastric cells. Journal of Pathology, 2005, 207, 396-401.	2.1	57
52	Thomsen-Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology, 2005, 15, 511-517.	1.3	37
53	Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen. Cancer Research, 2004, 64, 7050-7057.	0.4	203
54	Coordinated Expression of MUC2 and CDX-2 in Mucinous Carcinomas of the Lung Can Be Explained by the Role of CDX-2 as Transcriptional Regulator of MUC2. American Journal of Surgical Pathology, 2004, 28, 1254-1255.	2.1	12

RAQUEL ALMEIDA

#	Article	IF	CITATIONS
55	Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739G→A and 839T→C, are partly responsible for non-secretor status in a Caucasian population from Northern Portugal. Biochemical Journal, 2004, 383, 469-474.	1.7	32
56	Lewis enzyme (α1–3/4 fucosyltransferase) polymorphisms do not explain the Lewis phenotype in the gastric mucosa of a Portuguese population. Journal of Human Genetics, 2003, 48, 183-189.	1.1	16
57	Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. Journal of Pathology, 2003, 199, 36-40.	2.1	248
58	MUC1 polymorphism confers increased risk for intestinal metaplasia in a Colombian population with chronic gastritis. European Journal of Human Genetics, 2003, 11, 380-384.	1.4	21
59	Role of site-specific promoter hypomethylation in aberrant MUC2 mucin expression in mucinous gastric carcinomas. Cancer Letters, 2003, 189, 129-136.	3.2	35
60	Human MUC2 Mucin Gene Is Transcriptionally Regulated by Cdx Homeodomain Proteins in Gastrointestinal Carcinoma Cell Lines. Journal of Biological Chemistry, 2003, 278, 51549-51556.	1.6	130
61	Polypeptide GalNAc-transferases, ST6GalNAc-transferase I, and ST3Gal-transferase I Expression in Gastric Carcinoma Cell Lines. Journal of Histochemistry and Cytochemistry, 2003, 51, 761-771.	1.3	49
62	c-erb B-2 Expression Is Associated with Tumor Location and Venous Invasion and Influences Survival of Patients with Gastric Carcinoma. International Journal of Surgical Pathology, 2002, 10, 247-256.	0.4	51
63	MUC1 gene polymorphism in the gastric carcinogenesis pathway. European Journal of Human Genetics, 2001, 9, 548-552.	1.4	57
64	Cloning and Expression of a Proteoglycan UDP-Galactose:β-Xylose β1,4-Galactosyltransferase I. Journal of Biological Chemistry, 1999, 274, 26165-26171.	1.6	212
65	Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochimica Et Biophysica Acta - General Subjects, 1999, 1473, 35-53.	1.1	259
66	Cloning of a Novel Member of the UDP-Galactose:β-N-Acetylglucosamine β1,4-Galactosyltransferase Family, β4Gal-T4, Involved in Glycosphingolipid Biosynthesis. Journal of Biological Chemistry, 1998, 273, 29331-29340.	1.6	94
67	A Family of Human β3-Galactosyltransferases. Journal of Biological Chemistry, 1998, 273, 12770-12778.	1.6	175
68	Synthesis of Poly-N-acetyllactosamine in Core 2 Branched O-Glycans. Journal of Biological Chemistry, 1998, 273, 34843-34849.	1.6	86
69	A Family of Human β4-Galactosyltransferases. Journal of Biological Chemistry, 1997, 272, 31979-31991.	1.6	170