Jonghye Woo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1128-1139.	6.3	10
2	Deep learning-based GTV contouring modeling inter- and intra- observer variability in sarcomas. Radiotherapy and Oncology, 2022, 167, 269-276.	0.6	9
3	Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3185-3196.	6.3	4
4	Generative Self-training for Cross-Domain Unsupervised Tagged-to-Cine MRI Synthesis. Lecture Notes in Computer Science, 2021, 12903, 138-148.	1.3	17
5	Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation. Lecture Notes in Computer Science, 2021, 12902, 549-559.	1.3	27
6	Floor-of-the-mouth muscle function analysis using dynamic magnetic resonance imaging. , 2021, 11596, .		1
7	A deep joint sparse non-negative matrix factorization framework for identifying the common and subject-specific functional units of tongue motion during speech. Medical Image Analysis, 2021, 72, 102131.	11.6	6
8	Speech intelligibility loss due to amyotrophic lateral sclerosis: the effect of tongue movement reduction on vowel and consonant acoustic features. Clinical Linguistics and Phonetics, 2021, 35, 1-22.	0.9	5
9	Symmetric-Constrained Irregular Structure Inpainting for Brain MRI Registration with Tumor Pathology. Lecture Notes in Computer Science, 2021, 12658, 80-91.	1.3	17
10	4D magnetic resonance imaging atlas construction using temporally aligned audio waveforms in speech. Journal of the Acoustical Society of America, 2021, 150, 3500-3508.	1.1	4
11	Severity-Aware Semantic Segmentation With Reinforced Wasserstein Training. , 2020, , .		16
12	Analysis of fiber strain in the human tongue during speech. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 312-322.	1.6	6
13	Identifying the Common and Subject-specific Functional Units of Speech Movements via a Joint Sparse Non-negative Matrix Factorization Framework. Proceedings of SPIE, 2020, 11313, .	0.8	1
14	Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magnetic Resonance Imaging, 2019, 64, 132-141.	1.8	63
15	Differentiating post-cancer from healthy tongue muscle coordination patterns during speech using deep learning. Journal of the Acoustical Society of America, 2019, 145, EL423-EL429.	1.1	7
16	A Sparse Non-Negative Matrix Factorization Framework for Identifying Functional Units of Tongue Behavior From MRI. IEEE Transactions on Medical Imaging, 2019, 38, 730-740.	8.9	9
17	Speech Map: a statistical multimodal atlas of 4D tongue motion during speech from tagged and cine MR images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 361-373.	1.9	16
18	Atlas-Based Tongue Muscle Correlation Analysis From Tagged and High-Resolution Magnetic Resonance Imaging. Journal of Speech, Language, and Hearing Research, 2019, 62, 2258-2269.	1.6	12

JONGHYE WOO

#	Article	IF	CITATIONS
19	Magnetic resonance imaging based anatomical assessment of tongue impairment due to amyotrophic lateral sclerosis: A preliminary study. Journal of the Acoustical Society of America, 2018, 143, EL248-EL254.	1.1	15
20	A spatio-temporal atlas and statistical model of the tongue during speech from cine-MRI. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 520-531.	1.9	12
21	Structure and variability in human tongue muscle anatomy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 499-507.	1.9	31
22	Subject-specific brain tumor growth modelling via an efficient Bayesian inference framework. , 2018, 10574, .		2
23	Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI. , 2018, 10574, .		5
24	A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging. Proceedings of SPIE, 2017, 10133, .	0.8	4
25	Rapid computation of single <scp>PET</scp> scan restâ€stress myocardial blood flow parametric images by table look up. Medical Physics, 2017, 44, 4643-4651.	3.0	1
26	Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images. IEEE Transactions on Medical Imaging, 2017, 36, 2116-2128.	8.9	26
27	The Effects of Palate Features and Glossectomy Surgery on /s/ Production. Journal of Speech, Language, and Hearing Research, 2017, 60, 3417-3425.	1.6	2
28	Spatiotemporal-atlas-based dynamic speech imaging. Proceedings of SPIE, 2016, , .	0.8	2
29	A high-resolution atlas and statistical model of the vocal tract from structural MRI. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2015, 3, 47-60.	1.9	27
30	Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging. Proceedings of SPIE, 2015, 9413, .	0.8	9
31	Segmentation of tongue muscles from super-resolution magnetic resonance images. Medical Image Analysis, 2015, 20, 198-207.	11.6	32
32	Multimodal Registration via Mutual Information Incorporating Geometric and Spatial Context. IEEE Transactions on Image Processing, 2015, 24, 757-769.	9.8	110
33	Construction of An Unbiased Spatio-Temporal Atlas of the Tongue During Speech. Lecture Notes in Computer Science, 2015, 24, 723-732.	1.3	11
34	Patterns of variance in /s/ during normal and glossectomy speech. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2014, 2, 197-207.	1.9	4
35	Tissue-Point Motion Tracking in the Tongue From Cine MRI and Tagged MRI. Journal of Speech, Language, and Hearing Research, 2014, 57, S626-36.	1.6	10
36	Determining Functional Units of Tongue Motion via Graph-Regularized Sparse Non-negative Matrix Factorization. Lecture Notes in Computer Science, 2014, 17, 146-153.	1.3	9

Jonghye Woo

#	Article	IF	CITATIONS
37	MRI analysis of 3D normal and post-glossectomy tongue motion in speech. , 2013, 2013, 816-819.		1
38	Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI. , 2013, 2013, 1465-1468.		12
39	Multi-subject atlas built from structural tongue magnetic resonance images. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
40	3D Tongue Motion from Tagged and Cine MR Images. Lecture Notes in Computer Science, 2013, 16, 41-48.	1.3	13
41	Reconstruction of High-Resolution Tongue Volumes From MRI. IEEE Transactions on Biomedical Engineering, 2012, 59, 3511-3524.	4.2	59
42	Frequency of Apical and Laminal /s/ in Normal and Postglossectomy Patients. Journal of Medical Speech - Language Pathology, 2012, 20, .	0.2	6
43	Automatic 3D registration of dynamic stress and rest ⁸² Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. Medical Physics, 2011, 38, 6313-6326.	3.0	34
44	Deformable Registration of High-Resolution and Cine MR Tongue Images. Lecture Notes in Computer Science, 2011, 14, 556-563.	1.3	3
45	Nonlinear registration of serial coronary CT angiography (CCTA) for assessment of changes in atherosclerotic plaque. Medical Physics, 2010, 37, 885-896.	3.0	2
46	Geometric featureâ€based multimodal image registration of contrastâ€enhanced cardiac CT with gated myocardial perfusion SPECT. Medical Physics, 2009, 36, 5467-5479.	3.0	21
47	Automated multi-modality registration of 64-slice coronary CT angiography with myocardial perfusion spect. , 2009, , 358-361.		2