Chawalit Ngamcharussrivichai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5087144/publications.pdf

Version: 2024-02-01

85 papers 2,954 citations

201674 27 h-index 51 g-index

87 all docs

87 docs citations

87 times ranked

3126 citing authors

#	Article	IF	CITATIONS
1	Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 2008, 341, 77-85.	4.3	243
2	The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere, 2021, 272, 129601.	8.2	187
3	Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal, 2009, 145, 468-474.	12.7	186
4	Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chemical Engineering Journal, 2013, 214, 208-218.	12.7	186
5	Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene. Catalysis Today, 2008, 130, 14-23.	4.4	160
6	Biodiesel production through transesterification over natural calciums. Fuel Processing Technology, 2010, 91, 1409-1415.	7.2	145
7	Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 2021, 275, 130092.	8.2	134
8	Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A, 2007, 276, 24-33.	4.8	103
9	Effect of COVID-19 virus on reducing GHG emission and increasing energy generated by renewable energy sources: A brief study in Malaysian context. Environmental Technology and Innovation, 2020, 20, 101151.	6.1	68
10	Comparative Study on Adsorptive Removal of Thiophenic Sulfurs over Y and USY Zeolites. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 7405-7413.	3.7	64
11	Active and selective catalyst for liquid phase Beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis, 2005, 235, 139-149.	6.2	54
12	Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catalysis Today, 2010, 149, 52-61.	4.4	53
13	Liquid-phase Beckmann rearrangement of cyclohexanone oxime over mesoporous molecular sieve catalysts. Journal of Catalysis, 2004, 227, 448-458.	6.2	52
14	Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renewable Energy, 2015, 74, 433-440.	8.9	47
15	Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – Integrated algal biorefinery. Energy, 2019, 189, 116128.	8.8	47
16	Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere, 2015, 136, 222-231.	8.2	46
17	Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel, 2022, 324, 124313.	6.4	45
18	Adsorptive removal of thiophene and benzothiophene over zeolites from Mae Moh coal fly ash. Fuel, 2008, 87, 2347-2351.	6.4	43

#	Article	IF	Citations
19	Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts. Renewable Energy, 2021, 163, 1648-1659.	8.9	39
20	An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts. Fuel, 2007, 86, 50-59.	6.4	38
21	Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale – A low cost biorefinery approach. Energy Conversion and Management, 2019, 186, 188-199.	9.2	37
22	Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production. Environmental Technology and Innovation, 2020, 18, 100788.	6.1	37
23	Exploring untapped effect of process conditions on biochar characteristics and applications. Environmental Technology and Innovation, 2021, 21, 101310.	6.1	34
24	Heterogeneously catalyzed transesterification of palm oil with methanol to produce biodiesel over calcined dolomite: The role of magnesium oxide. Energy Conversion and Management, 2018, 171, 1311-1321.	9.2	33
25	Preparation of heterogeneous catalysts from limestone for transesterification of vegetable oils—Effects of binder addition. Journal of Industrial and Engineering Chemistry, 2011, 17, 587-595.	5.8	32
26	Seashell-derived mixed compounds of Ca, Zn and Al as active and stable catalysts for the transesterification of palm oil with methanol to biodiesel. Energy Conversion and Management, 2016, 122, 535-543.	9.2	32
27	Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel, 2022, 317, 123525.	6.4	30
28	Ameliorative photocatalytic dye degradation of hydrothermally synthesized bimetallic Ag-Sn hybrid nanocomposite treated upon domestic wastewater under visible light irradiation. Journal of Hazardous Materials, 2022, 421, 126734.	12.4	29
29	Catalytically active and selective centers for production of É>-caprolactam through liquid phase Beckmann rearrangement over H-USY catalyst. Applied Catalysis A: General, 2005, 288, 158-168.	4.3	28
30	Trends in Widely Used Catalysts for Fatty Acid Methyl Esters (FAME) Production: A Review. Catalysts, 2021, 11, 1085.	3.5	28
31	Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution. Journal of Hazardous Materials, 2011, 192, 1210-1218.	12.4	27
32	Mixed oxides of Ca, Mg and Zn as heterogeneous base catalysts for the synthesis of palm kernel oil methyl esters. Chemical Engineering Journal, 2013, 225, 616-624.	12.7	27
33	Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor. Journal of Industrial and Engineering Chemistry, 2014, 20, 1665-1671.	5.8	26
34	Synthesis of bifunctional nanocatalyst from waste palm kernel shell and its application for biodiesel production. RSC Advances, 2020, 10, 27183-27193.	3.6	24
35	Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation. Sustainable Materials and Technologies, 2021, 28, e00268.	3.3	23
36	Effects of crystalline structures and surface functional groups on the adsorption of haloacetic acids by inorganic materials. Journal of Hazardous Materials, 2009, 171, 491-499.	12.4	22

#	Article	IF	Citations
37	Active and Selective Bifunctional Catalyst for Gasoline Production through a Slurry-Phase Fischerâ^'Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2007, 46, 6883-6890.	3.7	21
38	Bioenergy production and metallic iron (Fe) conversion from Botryococcus sp. cultivated in domestic wastewater: Algal biorefinery concept. Energy Conversion and Management, 2019, 196, 1326-1334.	9.2	20
39	Citric acid as complexing agent in synthesis of mesoporous strontium titanate via neutral-templated self-assembly sol–gel combustion method. Microporous and Mesoporous Materials, 2016, 226, 505-509.	4.4	19
40	Biodiesel Production Via Interesterification of Palm Oil and Ethyl Acetate Using Ion-Exchange Resin in a Packed-Bed Reactor. Bioenergy Research, 2020, 13, 542-551.	3.9	19
41	Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization. Materials Chemistry and Physics, 2014, 143, 1199-1208.	4.0	18
42	Biodiesel production over Ca, Zn, and Al mixed compounds in fixed-bed reactor: Effects of premixing catalyst extrudates with methanol, oil, and fatty acid methyl esters. Fuel Processing Technology, 2016, 148, 67-75.	7.2	18
43	Evaluation on safety and energy requirement of biodiesel production: Conventional system and microreactors. Chemical Engineering Research and Design, 2019, 132, 294-302.	5.6	17
44	Production of biodiesel over waste seashell-derived active and stable extrudate catalysts in a fixed-bed reactor. Environmental Technology and Innovation, 2020, 20, 101051.	6.1	17
45	Selective Production of Îμ-Caprolactam via Liquid-phase Beckmann Rearrangement of Cyclohexanone Oxime over HUSY Catalyst. Chemistry Letters, 2004, 33, 1288-1289.	1.3	16
46	Adsorption of ciprofloxacin on surface functionalized superparamagnetic porous silicas. Desalination and Water Treatment, 2014, 52, 4430-4443.	1.0	16
47	Mesostructured Sr and Ti mixed oxides as heterogeneous base catalysts for transesterification of palm kernel oil with methanol. Chemical Engineering Journal, 2015, 264, 789-796.	12.7	16
48	Lanthanum-doped mesostructured strontium titanates synthesized via sol–gel combustion route using citric acid as complexing agent. Materials Chemistry and Physics, 2016, 181, 422-431.	4.0	16
49	Enhancement effect of organic additives on liquid-phase production of $\hat{l}\mu$ -caprolactam. Catalysis Communications, 2007, 8, 135-138.	3.3	15
50	Removal of haloacetonitriles in aqueous solution through adsolubilization process by polymerizable surfactant-modified mesoporous silica. Journal of Hazardous Materials, 2013, 244-245, 151-159.	12.4	15
51	Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review. International Journal of Hydrogen Energy, 2022, 47, 42051-42074.	7.1	15
52	Mesostructured natural rubber/in situ formed silica nanocomposites: A simple way to prepare mesoporous silica with hydrophobic properties. Microporous and Mesoporous Materials, 2018, 259, 79-88.	4.4	14
53	Ca–Mg–Al ternary mixed oxides derived from layered double hydroxide for selective etherification of glycerol to short-chain polyglycerols. Applied Clay Science, 2019, 173, 79-87.	5.2	14
54	Tunable mesoporosity and hydrophobicity of natural rubber/hexagonal mesoporous silica nanocomposites. Microporous and Mesoporous Materials, 2019, 275, 235-243.	4.4	14

#	Article	IF	CITATIONS
55	Regeneration of coked zeolite from PMMA cracking process by ozonation. Applied Catalysis B: Environmental, 2013, 140-141, 396-405.	20.2	13
56	Natural rubber as a renewable carbon source for mesoporous carbon/silica nanocomposites. Scientific Reports, 2020, 10, 12977.	3 . 3	13
57	Glucose Conversion into 5-Hydroxymethylfurfural over Niobium Oxides Supported on Natural Rubber-Derived Carbon/Silica Nanocomposite. Catalysts, 2021, 11, 887.	3.5	13
58	Direct biogas upgrading via CO2 methanation to high-quality biomethane over NiMg/CNT-SiO2 fiber catalysts. Fuel, 2022, 310, 122289.	6.4	13
59	Cr/MCM-22 catalyst for the synthesis of levulinic acid from green hydrothermolysis of renewable biomass resources. Journal of Catalysis, 2022, 405, 373-384.	6.2	13
60	Synthesis of periodic mesoporous organosilicas functionalized with different amine-organoalkoxysilanes via direct co-condensation. Materials Chemistry and Physics, 2015, 149-150, 701-712.	4.0	12
61	Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica. Materials Chemistry and Physics, 2014, 147, 583-593.	4.0	11
62	Continuous production of fatty acid methyl esters and high-purity glycerol over a dolomite-derived extrudate catalyst in a countercurrent-flow trickle-bed reactor. Renewable Energy, 2020, 157, 626-636.	8.9	11
63	Palm Biochar-Based Sulphated Zirconium (Zr-AC-HSO3) Catalyst for Methyl Ester Production from Palm Fatty Acid Distillate. Catalysts, 2019, 9, 1029.	3.5	10
64	Partial Hydrogenation of Palm Oil-Derived Biodiesel over Ni/Electrospun Silica Fiber Catalysts. Catalysts, 2020, 10, 993.	3.5	10
65	Enhanced esterification of carboxylic acids with ethanol using propylsulfonic acid-functionalized natural rubber/hexagonal mesoporous silica nanocomposites. Catalysis Communications, 2016, 80, 5-9.	3.3	9
66	Valorization of biodiesel plant-derived products via preparation of solketal fatty esters over calcium-rich natural materials derived oxides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 57-64.	5. 3	9
67	Adsorption of single and mixed haloacetonitriles on silica-based porous materials: Mechanisms and effects of porous structures. Journal of Environmental Sciences, 2019, 79, 346-360.	6.1	9
68	A biorefinery approach for high value-added bioproduct (astaxanthin) from alga Haematococcus sp. and residue pyrolysis for biochar synthesis and metallic iron production from hematite (Fe2O3). Fuel, 2021, 304, 121150.	6.4	9
69	Selective synthesis of 5-hydroxymethylfurfural over natural rubber–derived carbon/silica nanocomposites with acid–base bifunctionality. Fuel, 2022, 311, 122577.	6.4	9
70	Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis. Nanomaterials, 2022, 12, 604.	4.1	9
71	One-pot synthesis of wormhole-like mesostructured silica with a high amine loading for enhanced adsorption of clofibric acid. Journal of Porous Materials, 2018, 25, 1611-1623.	2.6	8
72	Potential of Microalgal Biodiesel: Challenges and Applications. , 0, , .		8

#	Article	IF	Citations
73	Biohydrogenated Diesel from Palm Oil Deoxygenation over Unsupported and γ-Al ₂ O ₃ Supported Ni–Mo Catalysts. Energy & Energ	5.1	8
74	Etherification of glycerol into short-chain polyglycerols over MgAl LDH/CaCO3 nanocomposites as heterogeneous catalysts to promote circular bioeconomy. Chemosphere, 2022, 291, 133091.	8.2	7
7 5	Al ₂ O ₃ -supported Mixed Ca and Zn Compounds Prepared from Waste Seashells for Synthesis of Palm Fatty Acid Methyl Esters. Chemical Engineering Communications, 2015, 202, 1591-1599.	2.6	6
76	Alkoxide-intercalated Mg–Al layered double hydroxides as selective catalysts forÂthe synthesis of monoglycerides. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 273-289.	1.7	6
77	Lewatit-immobilized lipase from Bacillus pumilus as a new catalyst for biodiesel production from tallow: Response surface optimization, fuel properties and exhaust emissions. Chemical Engineering Research and Design, 2022, 160, 286-296.	5.6	6
78	Facile fabrication of mesostructured natural rubber/silica nanocomposites with enhanced thermal stability and hydrophobicity. Nanoscale Research Letters, 2019, 14, 382.	5.7	5
79	Synthesis and Characterization of Bimodal Mesoporous Silica Derived from Rice Husk Ash. Engineering Journal, 2019, 23, 25-34.	1.0	4
80	Mesoporous Acidic Catalysts Synthesis from Dual-Stage and Rising Co-Current Gasification Char: Application for FAME Production from Waste Cooking Oil. Materials, 2020, 13, 871.	2.9	2
81	Effects of KF Loading on Mg–Al Mixed Oxides for the Selective Synthesis of Trimethylolpropane Triesters. Chemical Engineering Communications, 2017, 204, 761-771.	2.6	1
82	Selective Production of ?-Caprolactam via Liquid-Phase Beckmann Rearrangement of Cyclohexanone Oxime over HUSY Catalyst ChemInform, 2005, 36, no.	0.0	0
83	Degradation of Poly(methyl methacrylate) over Zeolites in a Batch Reactor. Advanced Materials Research, 0, 622-623, 1173-1177.	0.3	0
84	Shell-Derived Heterogeneous Base Catalyst for Transesterification of Palm Oil. Advanced Materials Research, 0, 622-623, 1178-1182.	0.3	0
85	Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates. Proceedings of SPIE, 2014, , .	0.8	0