Sharona Tal Levy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086981/publications.pdf

Version: 2024-02-01

623734 477307 34 971 14 29 citations g-index h-index papers 34 34 34 720 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Much.Matter.in.Motion: learning by modeling systems in chemistry and physics with a universal programing platform. Interactive Learning Environments, 2023, 31, 3128-3147.	6.4	6
2	Perception of sonified representations of complex systems by people who are blind. Assistive Technology, 2022, 34, 11-19.	2.0	3
3	Working Together: Integrating Computational Modeling Approaches to Investigate Complex Phenomena. Journal of Science Education and Technology, 2021, 30, 40-57.	3.9	7
4	From feeling forces to understanding forces: The impact of bodily engagement on learning in science. Journal of Research in Science Teaching, 2021, 58, 1203-1237.	3.3	10
5	The Role of PhysicalÂand Computer-Based Experiences in Learning Science Using a Complex Systems Approach. Science and Education, 2021, 30, 717-753.	2.7	1
6	Interactions between reasoning about complex systems and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 2020, 57, 58-86.	3.3	18
7	Glycemic control in adolescents with type 1 diabetes: Are computerized simulations effective learning tools?. Pediatric Diabetes, 2020, 21, 328-338.	2.9	6
8	"When is the pressure zero inside a container? Mission impossible". , 2020, , .		1
9	Adherence to diabetes care: Knowledge of biochemical processes has a high impact on glycaemic control among adolescents with type 1 diabetes. Journal of Advanced Nursing, 2019, 75, 2701-2709.	3.3	6
10	Diving into the particle model: Examining the affordances of a single user participatory simulation. Computers and Education, 2019, 139, 65-80.	8.3	6
11	Attraction <i>vs.</i> repulsion – learning about forces and energy in chemical bonding with the ELI-Chem simulation. Chemistry Education Research and Practice, 2019, 20, 667-684.	2.5	16
12	Students' reasoning about chemical bonding: The lacuna of repulsion. Journal of Research in Science Teaching, 2019, 56, 881-904.	3.3	12
13	Computer-model-based audio and its influence on science learning by people who are blind. Interactive Learning Environments, 2019, 27, 856-868.	6.4	4
14	Designing for discovery learning of complexity principles of congestion by driving together in the TrafficJams simulation. Instructional Science, 2018, 46, 105-132.	2.0	8
15	Nursing students learning the pharmacology of diabetes mellitus with complexity-based computerized models: A quasi-experimental study. Nurse Education Today, 2018, 61, 175-181.	3.3	14
16	Situated Simulation-Based Learning Environment to Improve Proportional Reasoning in Nursing Students. International Journal of Science and Mathematics Education, 2018, 16, 1521-1539.	2.5	6
17	Feeling the forces within materials: bringing inter-molecular bonding to the fore using embodied modelling. International Journal of Science Education, 2018, 40, 1567-1586.	1.9	9
18	Listen to the models: Sonified learning models for people who are blind. Computers and Education, 2018, 127, 141-153.	8.3	11

#	Article	IF	CITATIONS
19	Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation. Computers and Education, 2017, 113, 16-27.	8.3	134
20	Micro–macro compatibility: When does a complex systems approach strongly benefit science learning?. Science Education, 2017, 101, 985-1014.	3.0	30
21	ConfChem Conference on Interactive Visualizations for Chemistry Teaching and Learning: Learning by Beingâ€"Playing Particles in the MeParticleâ€"WeMatter Simulation. Journal of Chemical Education, 2016, 93, 1145-1147.	2.3	4
22	Frogs to Think with., 2016,,.		48
23	Biking with Particles: Junior Triathletes' Learning About Drafting Through Exploring Agent-Based Models and Inventing New Tactics. Technology, Knowledge and Learning, 2013, 18, 9-37.	4.9	3
24	Young children's learning of water physics by constructing working systems. International Journal of Technology and Design Education, 2013, 23, 537-566.	2.6	27
25	Examining the Relationship Between Students' Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry. International Journal of Science Education, 2011, 33, 653-684.	1.9	80
26	Mining students' inquiry actions for understanding of complex systems. Computers and Education, 2011, 56, 556-573.	8.3	40
27	Listening to complexity: blind people's learning about gas particles through a sonified model. International Journal on Disability and Human Development, 2011, 10, .	0.2	2
28	Making Sense by Building Sense: Kindergarten Children's Construction and Understanding of Adaptive Robot Behaviors. International Journal of Computers for Mathematical Learning, 2010, 15, 99-127.	0.6	48
29	Episodes to scripts to rules: concrete-abstractions in kindergarten children's explanations of a robot's behavior. International Journal of Technology and Design Education, 2009, 19, 15-36.	2.6	37
30	Students' Learning with the Connected Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate World. Journal of Science Education and Technology, 2009, 18, 243-254.	3.9	114
31	Crossing Levels and Representations: The Connected Chemistry (CC1) Curriculum. Journal of Science Education and Technology, 2009, 18, 224-242.	3.9	68
32	Does it "want―or "was it programmed to� Kindergarten children's explanations of an autonomorobot's adaptive functioning. International Journal of Technology and Design Education, 2008, 18, 337-359.	us 2.6	42
33	Inventing a "Mid Level―to Make Ends Meet: Reasoning between the Levels of Complexity. Cognition and Instruction, 2008, 26, 1-47.	2.9	114
34	Photophysics of cyclic .alphadiketone-aromatic ring bichromophoric molecules. Structures, spectra, and intramolecular electronic energy transfer. Journal of the American Chemical Society, 1992, 114, 10747-10756.	13.7	36