Charles ffrench-Constant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Actions of the Thyroid Hormone Transporters Mct8 and Oatp1c1 in Murine Adult Hippocampal Neurogenesis. Cells, 2022, 11, 524.	4.1	8
2	Oriented and sustained protein expression on biomimicking electrospun fibers for evaluating functionality of cells. Materials Science and Engineering C, 2021, 118, 111407.	7.3	2
3	Hypomyelinating leukodystrophies — unravelling myelin biology. Nature Reviews Neurology, 2021, 17, 88-103.	10.1	83
4	Establishing an Adult Mouse Brain Hippocampal Organotypic Slice Culture System that Allows for Tracing and Pharmacological Manipulation of ex vivo Neurogenesis. Bio-protocol, 2021, 11, e3869.	0.4	4
5	Age-related loss of axonal regeneration is reflected by the level of local translation. Experimental Neurology, 2021, 339, 113594.	4.1	8
6	iPSC-derived myelinoids to study myelin biology of humans. Developmental Cell, 2021, 56, 1346-1358.e6.	7.0	34
7	Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length. Journal of Neuroscience, 2021, 41, 7954-7964.	3.6	20
8	Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurology, The, 2021, 20, 709-720.	10.2	44
9	Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 755406.	3.7	5
10	Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAPâ€Đependent Regulation. Small, 2020, 16, e2003656.	10.0	25
11	Hippocampal Neurogenesis Requires Cell-Autonomous Thyroid Hormone Signaling. Stem Cell Reports, 2020, 14, 845-860.	4.8	18
12	<scp>PI</scp> 3â€kinase delta enhances axonal <scp>PIP</scp> ₃ to support axon regeneration in the adult <scp>CNS</scp> . EMBO Molecular Medicine, 2020, 12, e11674.	6.9	31
13	Staining and Quantitative Analysis of Myelinating Oligodendrocytes in the Mouse Grey Matter. Bio-protocol, 2020, 10, e3792.	0.4	2
14	Transplanted t(1;11) patient-derived OPCs form shorter myelin internodes in the hypomyelinated shiverer mice. Molecular Psychiatry, 2019, 24, 1567-1567.	7.9	0
15	Laminin α2 controls mouse and human stem cell behaviour during midbrain dopaminergic neuron development. Development (Cambridge), 2019, 146, .	2.5	13
16	Familial t(1;11) translocation is associated with disruption of white matter structural integrity and oligodendrocyte–myelin dysfunction. Molecular Psychiatry, 2019, 24, 1641-1654.	7.9	18
17	The guanine nucleotide exchange factor Vav3 modulates oligodendrocyte precursor differentiation and supports remyelination in white matter lesions. Glia, 2019, 67, 376-392.	4.9	22
18	Oligodendrocyte–Neuron Myelinating Coculture. Methods in Molecular Biology, 2019, 1936, 111-128.	0.9	4

#	Article	IF	CITATIONS
19	Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature, 2019, 566, 543-547.	27.8	522
20	Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Molecular Therapy, 2019, 27, 411-423.	8.2	44
21	Endothelin signalling mediates experience-dependent myelination in the CNS. ELife, 2019, 8, .	6.0	64
22	Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nature Medicine, 2018, 24, 1837-1844.	30.7	351
23	Seeing Is Believing: Myelin Dynamics in the Adult CNS. Neuron, 2018, 98, 684-686.	8.1	15
24	The Matricellular Protein R-Spondin 2 Promotes Midbrain Dopaminergic Neurogenesis and Differentiation. Stem Cell Reports, 2018, 11, 651-664.	4.8	22
25	Microfiber drug/gene delivery platform for study of myelination. Acta Biomaterialia, 2018, 75, 152-160.	8.3	21
26	Gelsolin dysfunction causes photoreceptor loss in induced pluripotent cell and animal retinitis pigmentosa models. Nature Communications, 2017, 8, 271.	12.8	52
27	Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature, 2017, 547, 350-354.	27.8	405
28	Selective rab11 transport and the intrinsic regenerative ability of CNS axons. ELife, 2017, 6, .	6.0	59
29	Regenerating CNS myelin — from mechanisms to experimental medicines. Nature Reviews Neuroscience, 2017, 18, 753-769.	10.2	413
30	Extracellular Matrix Regulation of Stem Cell Behavior. Current Stem Cell Reports, 2016, 2, 197-206.	1.6	166
31	FAT1 mutations cause a glomerulotubular nephropathy. Nature Communications, 2016, 7, 10822.	12.8	99
32	Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. Journal of Cell Biology, 2015, 211, 975-985.	5.2	118
33	Can the Irradiated Brain Be Salvaged by Oligodendrocyte Precursor Transplantation?. Cell Stem Cell, 2015, 16, 113-114.	11.1	2
34	Use of induced pluripotent stem-cell technology to understand photoreceptor cytoskeletal dynamics in retinitis pigmentosa. Lancet, The, 2015, 385, S69.	13.7	7
35	Downregulation of the microtubule associated protein <scp>T</scp> au impairs process outgrowth and myelin basic protein m <scp>RNA</scp> transport in oligodendrocytes. Glia, 2015, 63, 1621-1635.	4.9	65
36	CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes. Current Biology, 2015, 25, 2411-2416.	3.9	266

#	Article	IF	CITATIONS
37	Regulation of the neural stem cell compartment by extracellular matrix constituents. Progress in Brain Research, 2014, 214, 3-28.	1.4	56
38	Neural stem cell quiescence comes to an un-sticky end. Nature Cell Biology, 2014, 16, 625-627.	10.3	2
39	Disc1 Variation Leads to Specific Alterations in Adult Neurogenesis. PLoS ONE, 2014, 9, e108088.	2.5	19
40	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 2013, 16, 1211-1218.	14.8	1,357
41	Neuregulin and BDNF Induce a Switch to NMDA Receptor-Dependent Myelination by Oligodendrocytes. PLoS Biology, 2013, 11, e1001743.	5.6	264
42	Retinoid X receptor gamma signaling accelerates CNS remyelination. Nature Neuroscience, 2011, 14, 45-53.	14.8	449