William D Bovill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086750/publications.pdf

Version: 2024-02-01

8	575	8	8
papers	citations	h-index	g-index
10	10	10	981
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Ground-Based LiDAR Improves Phenotypic Repeatability of Above-Ground Biomass and Crop Growth Rate in Wheat. Plant Phenomics, 2020, 2020, 8329798.	5.9	17
2	Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat. BMC Plant Biology, 2019, 19, 332.	3.6	12
3	Evaluation of the Phenotypic Repeatability of Canopy Temperature in Wheat Using Continuous-Terrestrial and Airborne Measurements. Frontiers in Plant Science, 2019, 10, 875.	3.6	36
4	High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. Frontiers in Plant Science, 2018, 9, 237.	3.6	206
5	Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography. Frontiers in Plant Science, 2016, 7, 1808.	3.6	118
6	High-throughput phenotyping technologies allow accurate selection of stay-green. Journal of Experimental Botany, 2016, 67, 4919-4924.	4.8	75
7	Responses to phosphorus among wheat genotypes. Crop and Pasture Science, 2015, 66, 430.	1.5	40
8	Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with nearâ€isogenic lines of wheat. Physiologia Plantarum, 2014, 151, 230-242.	5.2	71