M M Kasliwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5086001/publications.pdf

Version: 2024-02-01

283 papers 24,858 citations

76 h-index ⁷⁹⁵⁰
149
g-index

284 all docs

284 docs citations

times ranked

284

10138 citing authors

#	Article	IF	CITATIONS
1	LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophysical Journal, 2019, 873, 111.	4.5	1,744
2	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	3.1	1,020
3	The Palomar Transient Factory: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2009, 121, 1395-1408.	3.1	900
4	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
5	Exploring the Optical Transient Sky with the Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 2009, 121, 1334-1351.	3.1	618
6	The Zwicky Transient Facility: Data Processing, Products, and Archive. Publications of the Astronomical Society of the Pacific, 2019, 131, 018003.	3.1	610
7	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
8	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
9	Hydrogen-poor superluminous stellar explosions. Nature, 2011, 474, 487-489.	27.8	440
10	The <i>Spitzer </i> Survey of Stellar Structure in Galaxies. Publications of the Astronomical Society of the Pacific, 2010, 122, 1397-1414.	3.1	426
11	Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 2006, 442, 1014-1017.	27.8	422
12	Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature, 2011, 480, 344-347.	27.8	412
13	An extremely luminous X-ray outburst at the birth of a supernova. Nature, 2008, 453, 469-474.	27.8	407
14	Supernova 2007bi as a pair-instability explosion. Nature, 2009, 462, 624-627.	27.8	399
15	<i>Swift</i> and <i>NuSTAR</i> observations of GW170817: Detection of a blue kilonova. Science, 2017, 358, 1565-1570.	12.6	399
16	A radio counterpart to a neutron star merger. Science, 2017, 358, 1579-1583.	12.6	390
17	An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy. Science, 2011, 333, 199-202.	12.6	290
18	A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 2018, 554, 207-210.	27.8	283

#	Article	IF	CITATIONS
19	PTF 11kx: A Type la Supernova with a Symbiotic Nova Progenitor. Science, 2012, 337, 942-945.	12.6	282
20	A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature, 2014, 509, 471-474.	27.8	250
21	The host galaxy of a fast radio burst. Nature, 2016, 530, 453-456.	27.8	241
22	A real-time fast radio burst: polarization detection and multiwavelength follow-up. Monthly Notices of the Royal Astronomical Society, 2015, 447, 246-255.	4.4	236
23	SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260. Astrophysical Journal, 2007, 659, L13-L16.	4.5	230
24	Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g. Physical Review Letters, 2020, 124, 251102.	7.8	226
25	Confined dense circumstellar material surrounding a regular type II supernova. Nature Physics, 2017, 13, 510-517.	16.7	221
26	IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION. Astrophysical Journal, 2013, 767, 124.	4.5	197
27	An outburst from a massive star 40 days before a supernova explosion. Nature, 2013, 494, 65-67.	27.8	183
28	TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM. Astrophysical Journal, Supplement Series, 2013, 207, 3.	7.7	180
29	PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS. Astrophysical Journal, 2014, 789, 104.	4.5	175
30	CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES. Astrophysical Journal, 2012, 755, 161.	4.5	174
31	Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies. Astrophysical Journal, 2021, 908, 4.	4.5	174
32	DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn. Astrophysical Journal Letters, 2013, 775, L7.	8.3	169
33	iPTF16geu: A multiply imaged, gravitationally lensed type la supernova. Science, 2017, 356, 291-295.	12.6	168
34	FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND & lt;10-DAY-OLD TYPE II SUPERNOVAE. Astrophysical Journal, 2016, 818, 3.	4.5	161
35	A strong ultraviolet pulse from a newborn type Ia supernova. Nature, 2015, 521, 328-331.	27.8	157
36	SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51. Astrophysical Journal Letters, 2011, 742, L18.	8.3	156

3

#	Article	IF	Citations
37	CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES. Astrophysical Journal, 2010, 721, 777-784.	4.5	153
38	SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND. Astrophysical Journal, 2010, 724, 1396-1401.	4.5	152
39	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
40	Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era. Publications of the Astronomical Society of the Pacific, 2012, 124, 1175-1196.	3.1	141
41	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136
42	A tidal disruption event coincident with a high-energy neutrino. Nature Astronomy, 2021, 5, 510-518.	10.1	136
43	The first direct double neutron star merger detection: Implications for cosmic nucleosynthesis. Astronomy and Astrophysics, 2018, 615, A132.	5.1	134
44	RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".la―EXPLOSION. Astrophysical Journal Letters, 2010 723, L98-L102.), 8.3	126
45	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	8.3	126
46	The Palomar Transient Factory Photometric Calibration. Publications of the Astronomical Society of the Pacific, 2012, 124, 62-73.	3.1	124
47	A Turnover in the Radio Light Curve of GW170817. Astrophysical Journal Letters, 2018, 858, L15.	8.3	118
48	THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51. Astrophysical Journal Letters, 2011, 741, L28.	8.3	115
49	The bolometric light curves and physical parameters of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2973-3002.	4.4	115
50	A Strong Jet Signature in the Late-time Light Curve of GW170817. Astrophysical Journal Letters, 2018, 868, L11.	8.3	114
51	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	27.8	112
52	The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy. Publications of the Astronomical Society of the Pacific, 2019, 131, 038003.	3.1	112
53	PTF11iqb: cool supergiant mass-loss that bridges the gap between TypeÂlln and normal supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1876-1896.	4.4	111
54	GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES. Astrophysical Journal, 2016, 820, 136.	4.5	111

#	Article	IF	Citations
55	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
56	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	4.5	107
57	The Type IIb SN 2008ax: spectral and light curve evolution. Monthly Notices of the Royal Astronomical Society, 2008, 389, 955-966.	4.4	105
58	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	4. 5	105
59	THE RISE OF SN 2014J IN THE NEARBY GALAXY M82. Astrophysical Journal Letters, 2014, 784, L12.	8.3	104
60	DARK BURSTS IN THE <i>SWIFT</i> ERA: THE PALOMAR 60 INCH- <i>SWIFT</i> EARLY OPTICAL AFTERGLOW CATALOG. Astrophysical Journal, 2009, 693, 1484-1493.	4. 5	102
61	AT2018cow: A Luminous Millimeter Transient. Astrophysical Journal, 2019, 871, 73.	4.5	101
62	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	4.5	98
63	THE CALTECH-NRAO STRIPE 82 SURVEY (CNSS) PAPER. I. THE PILOT RADIO TRANSIENT SURVEY IN 50 DEG ² . Astrophysical Journal, 2016, 818, 105.	4.5	97
64	THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE <code><i>i>HUBBLE</i></code> SPACE TELESCOPE <code>.</code> Astrophysical Journal Letters, 2014, 788, L21.	8.3	94
65	Real-bogus classification for the Zwicky Transient Facility using deep learning. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3582-3590.	4.4	94
66	THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION. Astrophysical Journal, 2014, 797, 24.	4.5	92
67	<i>Hubble Space Telescope</i> studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2359-2379.	4.4	91
68	The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs. Astrophysical Journal, 2020, 895, 32.	4.5	91
69	GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR. Astrophysical Journal Letters, 2019, 885, L19.	8.3	86
70	A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science, 2018, 362, 201-206.	12.6	84
71	Machine Learning for the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 038002.	3.1	83
72	REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY. Astrophysical Journal, 2011, 736, 159.	4.5	81

#	Article	IF	Citations
73	COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101. Astrophysical Journal, 2017, 834, 107.	4.5	81
74	The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 2017, 129, 014002.	3.1	80
7 5	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	4.5	79
76	Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3301-3329.	4.4	78
77	ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophysical Journal, 2019, 886, 152.	4.5	77
78	A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT. Astrophysical Journal, 2014, 782, 42.	4.5	76
79	Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3258-3274.	4.4	75
80	TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS. Astrophysical Journal, 2016, 820, 33.	4.5	75
81	SPIRITS: Uncovering Unusual Infrared Transients with Spitzer. Astrophysical Journal, 2017, 839, 88.	4.5	75
82	DISCOVERY OF A NEW PHOTOMETRIC SUB-CLASS OF FAINT AND FAST CLASSICAL NOVAE. Astrophysical Journal, 2011, 735, 94.	4.5	74
83	Massive star mergers and the recent transient in NGC 4490: a more massive cousin of V838 Mon and V1309 Sco. Monthly Notices of the Royal Astronomical Society, 2016, 458, 950-962.	4.4	74
84	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	4.5	74
85	The Type IIb SN 2011dh: Two years of observations and modelling of the lightcurves. Astronomy and Astrophysics, 2015, 580, A142.	5.1	74
86	GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star–Black Hole Merger. Astrophysical Journal, 2020, 890, 131.	4.5	74
87	A VERY LARGE ARRAY SEARCH FOR 5 GHz RADIO TRANSIENTS AND VARIABLES AT LOW GALACTIC LATITUDES. Astrophysical Journal, 2011, 740, 65.	4.5	73
88	The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at zÂ=Â0.27. Astrophysical Journal, 2020, 895, 49.	4.5	72
89	DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION. Astrophysical Journal, 2013, 769, 130.	4.5	71
90	Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j. Nature Astronomy, 2021, 5, 46-53.	10.1	71

#	Article	IF	Citations
91	Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy, 2021, 5, 917-927.	10.1	69
92	Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3. Astrophysical Journal, 2020, 905, 145.	4.5	69
93	Strong near-infrared carbon in the Type Ia supernova iPTF13ebh. Astronomy and Astrophysics, 2015, 578, A9.	5.1	68
94	SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS. Astrophysical Journal, 2015, 799, 52.	4.5	68
95	From Î ³ to Radio: The Electromagnetic Counterpart of GW170817. Astrophysical Journal, 2018, 867, 18.	4.5	66
96	A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion. Astrophysical Journal, 2021, 912, 46.	4.5	66
97	Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1007-1012.	4.4	64
98	An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1258-1267.	4.4	64
99	ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS. Astrophysical Journal Letters, 2014, 789, L5.	8.3	64
100	THE DOUBLE-PEAKED SN 2013ge: A TYPE lb/c SN WITH AN ASYMMETRIC MASS EJECTION OR AN EXTENDED PROGENITOR ENVELOPE. Astrophysical Journal, 2016, 821, 57.	4.5	64
101	Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L7-L12.	3.3	64
102	The Palomar Transient Factory photometric catalog 1.0. Publications of the Astronomical Society of the Pacific, 2012, 124, 854-860.	3.1	63
103	INTERACTION-POWERED SUPERNOVAE: RISE-TIME VERSUS PEAK-LUMINOSITY CORRELATION AND THE SHOCK-BREAKOUT VELOCITY. Astrophysical Journal, 2014, 788, 154.	4.5	62
104	THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav. Astrophysical Journal, 2011, 732, 118.	4.5	61
105	X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS. Astrophysical Journal, 2013, 763, 42.	4.5	61
106	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	4.5	61
107	IPAC Image Processing and Data Archiving for the Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 0, , 000-000.	3.1	60
108	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	4.5	60

#	Article	IF	CITATIONS
109	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	4.5	59
110	Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia 16 apd. Astrophysical Journal, 2017, 840, 57.	4.5	57
111	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	4.5	57
112	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	4.5	57
113	ZTF 18aaqeasu (SN2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar-mass White Dwarf. Astrophysical Journal Letters, 2019, 873, L18.	8.3	56
114	Carnegie Supernova Project-II: Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to $\langle i \rangle z \langle i \rangle$ $\hat{a}^1/4$ 0.1. Publications of the Astronomical Society of the Pacific, 2019, 131, 014001.	3.1	56
115	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
116	PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99. Astrophysical Journal, 2011, 730, 134.	4.5	55
117	Systematically Bridging the Gap Between Novae and Supernovae. Publications of the Astronomical Society of Australia, 2012, 29, 482-488.	3.4	55
118	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	4.5	55
119	Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program. Publications of the Astronomical Society of the Pacific, 2019, 131, 014002.	3.1	55
120	SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE. Astrophysical Journal, 2013, 768, 47.	4.5	54
121	SN 2010MB: DIRECT EVIDENCE FOR A SUPERNOVA INTERACTING WITH A LARGE AMOUNT OF HYDROGEN-FREE CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2014, 785, 37.	4.5	54
122	Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Physical Review D, 2019, 100, .	4.7	54
123	The type IIb SN 2008ax: the nature of the progenitor. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 391, L5-L9.	3.3	53
124	CONSTRAINTS ON THE ORIGIN OF THE FIRST LIGHT FROM SN 2014J. Astrophysical Journal, 2015, 799, 106.	4.5	53
125	Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B. Astrophysical Journal Letters, 2017, 843, L34.	8.3	53
126	DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg ² : iPTF13bxl AND GRB 130702A. Astrophysical Journal Letters, 2013, 776, L34.	8.3	52

#	Article	IF	CITATIONS
127	SN 2010jp (PTF10aaxi): a jet in a Type II supernova. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1135-1144.	4.4	51
128	AN ACCRETING WHITE DWARF NEAR THE CHANDRASEKHAR LIMIT IN THE ANDROMEDA GALAXY. Astrophysical Journal, 2014, 786, 61.	4.5	51
129	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	8.3	50
130	iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. Astronomy and Astrophysics, 2016, 592, A89.	5.1	49
131	Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline. Publications of the Astronomical Society of the Pacific, 2016, 128, 114502.	3.1	49
132	Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	4.5	49
133	Palomar Gattini-IR: Survey Overview, Data Processing System, On-sky Performance and First Results. Publications of the Astronomical Society of the Pacific, 2020, 132, 025001.	3.1	49
134	The UV/optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2228-2248.	4.4	48
135	A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature, 2022, 601, 201-204.	27.8	48
136	Type IIn supernova light-curve properties measured from an untargeted survey sample. Astronomy and Astrophysics, 2020, 637, A73.	5.1	47
137	CLASSICAL NOVAE IN ANDROMEDA: LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY AND <i>GALEX</i> . Astrophysical Journal, 2012, 752, 133.	4.5	46
138	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	8.3	46
139	A SYSTEMATIC STUDY OF MID-INFRARED EMISSION FROM CORE-COLLAPSE SUPERNOVAE WITH SPIRITS. Astrophysical Journal, 2016, 833, 231.	4.5	46
140	An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star–Black Hole Merger LIGO/Virgo S190814bv. Astrophysical Journal Letters, 2019, 887, L13.	8.3	45
141	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	4.4	44
142	PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011, 418, 747-758.	4.4	43
143	THE NEEDLE IN THE 100 deg ² HAYSTACK: UNCOVERING AFTERGLOWS OF <i>FERMI</i> GRBs WITH THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2015, 806, 52.	4.5	43
144	Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields. Astrophysical Journal, 2019, 880, 7.	4.5	43

#	Article	IF	CITATIONS
145	DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY. Astrophysical Journal Letters, 2012, 760, L33.	8.3	42
146	RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS. Astrophysical Journal, 2016, 830, 42.	4.5	42
147	Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate. Astrophysical Journal, 2021, 918, 63.	4.5	42
148	SUPPLEMENT: "GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP―(2016, ApJL, 829, L15). Astrophysical Journal, Supplement Series, 2016, 226, 10.	7.7	41
149	The bumpy light curve of Type IIn supernova iPTF13z over 3 years. Astronomy and Astrophysics, 2017, 605, A6.	5.1	41
150	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	7.8	41
151	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. Astrophysical Journal, 2020, 892, 153.	4.5	40
152	PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY. Astrophysical Journal, 2016, 824, 6.	4.5	39
153	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	10.1	39
154	GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam. Astrophysical Journal Letters, 2019, 881, L7.	8.3	39
155	The SPIRITS Sample of Luminous Infrared Transients: Uncovering Hidden Supernovae and Dusty Stellar Outbursts in Nearby Galaxies*. Astrophysical Journal, 2019, 886, 40.	4.5	38
156	SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova. Astrophysical Journal, 2020, 900, 46.	4.5	38
157	GRB 070201: A Possible Soft Gammaâ€Ray Repeater in M31. Astrophysical Journal, 2008, 681, 1464-1469.	4.5	36
158	M31N 2007-11d: A SLOWLY RISING, LUMINOUS NOVA IN M31. Astrophysical Journal, 2009, 690, 1148-1157.	4.5	36
159	THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES. Astrophysical Journal, 2016, 820, 57.	4.5	35
160	The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova: A Case Study on GW190425. Astrophysical Journal, 2021, 922, 269.	4.5	35
161	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	4.5	35
162	Rapid "Turn-on―of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544. Astrophysical Journal, 2019, 874, 44.	4.5	33

#	Article	IF	Citations
163	Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. Astrophysical Journal Letters, 2021, 907, L28.	8.3	33
164	Asteroid rotation periods from the Palomar Transient Factory survey. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2094-2108.	4.4	32
165	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	4.5	32
166	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	4.5	31
167	GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate. Astrophysical Journal Letters, 2019, 881, L16.	8.3	30
168	The volumetric rate of normal type la supernovae in the local Universe discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2308-2320.	4.4	30
169	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017, 845, 152.	4.5	29
170	Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object. Astrophysical Journal, 2017, 848, 59.	4.5	28
171	<i>Spitzer</i> observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3442-3449.	4.4	28
172	Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations. Astronomical Journal, 2020, 160, 26.	4.7	28
173	A transient radio source consistent with a merger-triggered core collapse supernova. Science, 2021, 373, 1125-1129.	12.6	28
174	The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. Astronomy and Astrophysics, 2021, 653, A134.	5.1	28
175	CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM. Astrophysical Journal Letters, 2014, 780, L34.	8.3	27
176	2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 048001.	3.1	27
177	The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications. Astrophysical Journal, 2021, 922, 154.	4.5	27
178	SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE. Astrophysical Journal, 2015, 811, 117.	4.5	26
179	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	5.1	26
180	ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations. Astrophysical Journal, 2020, 902, 48.	4.5	26

#	Article	IF	CITATIONS
181	Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers. Astrophysical Journal, 2020, 904, 155.	4.5	26
182	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	4.5	25
183	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	4.5	25
184	PTF11mnb: First analog of supernova 2005bf. Astronomy and Astrophysics, 2018, 609, A106.	5.1	24
185	ZTF18aalrxas: A Type Ilb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	8.3	24
186	ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at zÂâ‰^Â2.9 with No Detected Gamma-Ray Burst Counterpart. Astrophysical Journal, 2020, 905, 98.	4. 5	24
187	Near-infrared Supernova la Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	4.5	24
188	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger. Astrophysical Journal, 2017, 847, 54.	4. 5	23
189	iPTF Archival Search for Fast Optical Transients. Astrophysical Journal Letters, 2018, 854, L13.	8.3	23
190	Uncovering Red and Dusty Ultraluminous X-Ray Sources with Spitzer. Astrophysical Journal, 2019, 878, 71.	4.5	23
191	Unveiling the dynamic infrared sky. Nature Astronomy, 2019, 3, 109-109.	10.1	23
192	A Population of Heavily Reddened, Optically Missed Novae from Palomar Gattini-IR: Constraints on the Galactic Nova Rate. Astrophysical Journal, 2021, 912, 19.	4.5	23
193	RISING FROM THE ASHES: MID-INFRARED RE-BRIGHTENING OF THE IMPOSTOR SN 2010da IN NGC 300. Astrophysical Journal, 2016, 830, 142.	4. 5	22
194	Supernova 2017eaw: Molecule and Dust Formation from Infrared Observations. Astrophysical Journal, 2019, 873, 127.	4.5	22
195	Cataclysmic Variables in the First Year of the Zwicky Transient Facility. Astronomical Journal, 2020, 159, 198.	4.7	22
196	RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1. Astrophysical Journal Letters, 2016, 829, L28.	8.3	21
197	Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 260, 18.	7.7	21
198	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	4.5	20

#	Article	IF	Citations
199	Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5503-5517.	4.4	20
200	Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65. Astrophysical Journal Letters, 2020, 896, L2.	8.3	20
201	The Peculiar Ca-rich SN2019ehk: Evidence for a Type Ilb Core-collapse Supernova from a Low-mass Stripped Progenitor. Astrophysical Journal Letters, 2021, 907, L18.	8.3	20
202	The Zwicky Transient Facility Type Ia supernova survey: first data release and results. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2228-2241.	4.4	20
203	Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. Astrophysical Journal Letters, 2019, 880, L20.	8.3	19
204	AGNs on the Move: A Search for Off-nuclear AGNs from Recoiling Supermassive Black Holes and Ongoing Galaxy Mergers with the Zwicky Transient Facility. Astrophysical Journal, 2021, 913, 102.	4.5	19
205	A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi. Astrophysical Journal, 2020, 903, 132.	4.5	19
206	PTF 12gzk—A RAPIDLY DECLINING, HIGH-VELOCITY TYPE Ic RADIO SUPERNOVA. Astrophysical Journal, 2013, 778, 63.	4.5	18
207	ABSENCE OF FAST-MOVING IRON IN AN INTERMEDIATE TYPE Ia SUPERNOVA BETWEEN NORMAL AND SUPER-CHANDRASEKHAR. Astrophysical Journal, 2016, 823, 147.	4. 5	18
208	Supernova 2014C: Ongoing Interaction with Extended Circumstellar Material with Silicate Dust. Astrophysical Journal, 2019, 887, 75.	4.5	18
209	Two stripped envelope supernovae with circumstellar interaction. Astronomy and Astrophysics, 2020, 643, A79.	5.1	18
210	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	4.5	18
211	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	8.3	18
212	Constraining Type Ia supernova explosions and early flux excesses with the Zwicky Transient Factory. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1317-1340.	4.4	18
213	The Double-peaked Radio Light Curve of Supernova PTF11qcj. Astrophysical Journal, 2019, 872, 201.	4.5	17
214	Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2777-2797.	4.4	17
215	Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae*. Astrophysical Journal, 2022, 925, 175.	4.5	17
216	SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163. Astrophysical Journal, 2017, 837, 167.	4.5	16

#	Article	IF	CITATION
217	R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5045-5076.	4.4	16
218	PTF14jg: The Remarkable Outburst and Post-burst Evolution of a Previously Anonymous Galactic Star. Astrophysical Journal, 2019, 874, 82.	4.5	16
219	Carnegie Supernova Project-II: Near-infrared Spectroscopic Diversity of Type II Supernovae. Astrophysical Journal, 2019, 887, 4.	4.5	16
220	SPIRITS Catalog of Infrared Variables: Identification of Extremely Luminous Long Period Variables. Astrophysical Journal, 2019, 877, 110.	4.5	15
221	Is supernova SN 2020faa an iPTF14hls look-alike?. Astronomy and Astrophysics, 2021, 646, A22.	5.1	15
222	Characterization of Temporarily Captured Minimoon 2020 CD ₃ by Keck Time-resolved Spectrophotometry. Astrophysical Journal Letters, 2020, 900, L45.	8.3	15
223	THE CONTINUED OPTICAL TO MID-INFRARED EVOLUTION OF V838 MONOCEROTIS*. Astronomical Journal, 2015, 149, 17.	4.7	14
224	Constraining the X-Ray–Infrared Spectral Index of Second-timescale Flares from SGR 1935+2154Âwith Palomar Gattini-IR. Astrophysical Journal Letters, 2020, 901, L7.	8.3	14
225	Background-limited Imaging in the Near Infrared with Warm InGaAs Sensors: Applications for Time-domain Astronomy. Astronomical Journal, 2019, 157, 46.	4.7	13
226	Initial Characterization of Active Transitioning Centaur, P/2019 LD ₂ (ATLAS), Using Hubble, Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy. Astronomical Journal, 2021, 161, 116.	4.7	13
227	Revealing Efficient Dust Formation at Low Metallicity in Extragalactic Carbon-rich Wolf-Rayet Binaries. Astrophysical Journal, 2021, 909, 113.	4.5	13
228	iPTF Survey for Cool Transients. Publications of the Astronomical Society of the Pacific, 2018, 130, 034202.	3.1	12
229	SPIRITS 16tn in NGCÂ3556: A Heavily Obscured and Low-luminosity Supernova at 8.8ÂMpc. Astrophysical Journal, 2018, 863, 20.	4.5	12
230	Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	12
231	A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5897-5915.	4.4	12
232	LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2208-2228.	4.4	12
233	Multi-wavelength Observations of AT2019wey: a New Candidate Black Hole Low-mass X-ray Binary. Astrophysical Journal, 2021, 920, 120.	4.5	12
234	SNIascore: Deep-learning Classification of Low-resolution Supernova Spectra. Astrophysical Journal Letters, 2021, 917, L2.	8.3	11

#	Article	IF	CITATIONS
235	The wide-field infrared transient explorer (WINTER). , 2020, , .		11
236	Infrared spectropolarimetric detection of intrinsic polarization from a core-collapse supernova. Nature Astronomy, 2021, 5, 544-551.	10.1	10
237	Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF. Astrophysical Journal Letters, 2021, 911, L35.	8.3	10
238	A low-energy explosion yields the underluminous Type IIP SN 2020cxd. Astronomy and Astrophysics, 2021, 655, A90.	5.1	10
239	An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers. Astrophysical Journal, 2022, 926, 152.	4.5	10
240	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	4.5	10
241	First Detection of Mid-infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1. Astrophysical Journal Letters, 2017, 838, L17.	8.3	9
242	Spitzer observations of large amplitude variables in the LMC and IC 1613. EPJ Web of Conferences, 2017, 152, 01009.	0.3	9
243	Early Ultraviolet Observations of Type Iln Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	4.5	9
244	On the Origin of SN 2016hilâ€"A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	4.5	8
245	Cataclysmic Variables in the Second Year of the Zwicky Transient Facility. Astronomical Journal, 2021, 162, 94.	4.7	8
246	Spectroscopy of the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 2021, 502, 510-520.	4.4	8
247	SOFIA/FORCAST Galactic Center Legacy Survey: Overview. Astrophysical Journal, 2020, 894, 55.	4.5	8
248	Faintest of Them All: ZTF 21aaoryiz/SN 2021fcgâ€"Discovery of an Extremely Low Luminosity Type lax Supernova. Astrophysical Journal Letters, 2021, 921, L6.	8.3	8
249	Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow. Astronomy and Astrophysics, 2022, 657, A64.	5.1	8
250	DBSP_DRP: A Python package for automated spectroscopic data reduction of DBSP data. Journal of Open Source Software, 2022, 7, 3612.	4.6	8
251	AT 2018lqh and the Nature of the Emerging Population of Day-scale Duration Optical Transients. Astrophysical Journal, 2021, 922, 247.	4.5	8
252	A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226. Astrophysical Journal, 2018, 857, 143.	4.5	7

#	Article	IF	CITATIONS
253	Census of R Coronae Borealis Stars. I. Infrared Light Curves from Palomar Gattini IR. Astrophysical Journal, 2021, 910, 132.	4.5	7
254	The Blue Supergiant Progenitor of the Supernova Imposter AT 2019krl. Astrophysical Journal, 2021, 917, 63.	4.5	7
255	PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3542-3556.	4.4	6
256	Outbursting Young Stellar Object PGIR 20dci in the Perseus Arm. Astronomical Journal, 2021, 161, 220.	4.7	6
257	Supernova siblings and their parent galaxies in the Zwicky Transient Facility Bright Transient Survey. Monthly Notices of the Royal Astronomical Society, 2022, 511, 241-254.	4.4	6
258	The Palomar transient factory. Proceedings of SPIE, 2015, , .	0.8	5
259	SRG/ART-XC discovery of SRGA J204318.2+443815: Towards the complete population of faint X-ray pulsars. Astronomy and Astrophysics, 2022, 661, A28.	5.1	5
260	The large-scale environment of thermonuclear and core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 510, 366-372.	4.4	5
261	Toward Rate Estimation for Transient Surveys. I. Assessing Transient Detectability and Volume Sensitivity for iPTF. Astrophysical Journal, 2019, 881, 128.	4.5	4
262	Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS., 2020,,.		4
263	AT 2019qyl in NGC 300: Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary* â€. Astrophysical Journal, 2021, 920, 127.	4.5	4
264	DECAM-GROWTH SEARCH FOR THE FAINT AND DISTANT BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS IN O3A. Revista Mexicana De Astronomãa Y Astrofãsica Serie De Conferencias, 0, 53, 91-99.	0.2	4
265	Seeing Gravitational Waves. Science, 2013, 340, 555-556.	12.6	3
266	Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework. I. Nondetection Methodology and Single-event Analyses. Astrophysical Journal, 2022, 925, 58.	4.5	3
267	In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility. Astrophysical Journal, 2022, 932, 40.	4.5	3
268	AT 2016dah and AT 2017fyp: the first classical novae discovered within a tidal stream. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1073-1092.	4.4	2
269	Opening the dynamic infrared sky. , 2018, , .		2
270	Second Timescale Photometry of the Very Fast Nova V1674 Her with Palomar Gattini-IR. Research Notes of the AAS, 2021, 5, 244.	0.7	2

#	Article	IF	Citations
271	The GALEX-PTF Experiment. II. Supernova Progenitor Radius and Energetics via Shock-cooling Modeling. Astrophysical Journal, 2022, 931, 71.	4. 5	2
272	Systematically Bridging the Gap between Novae and Supernovae. Proceedings of the International Astronomical Union, 2011, 7, 9-16.	0.0	1
273	An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2. Astrophysical Journal, 2018, 856, 38.	4.5	1
274	A Six-year Image-subtraction Light Curve of SN 2010jl. Publications of the Astronomical Society of the Pacific, 2019, 131, 054204.	3.1	1
275	A Massive AGB Donor in Scutum X-1: Identification of the First Mira Variable in an X-Ray Binary. Astrophysical Journal Letters, 2022, 928, L8.	8.3	1
276	Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*. Astrophysical Journal, 2022, 928, 158.	4.5	1
277	Systematically Bridging the Gap between NovÃ \mid and SupernovÃ \mid . Proceedings of the International Astronomical Union, 2011, 7, 62-62.	0.0	0
278	Workshop on Faint and Fast Transients. Proceedings of the International Astronomical Union, 2011, 7, 269-269.	0.0	0
279	SN 2010jp (PTF10aaxi): A Jet-driven Type II Supernova. Proceedings of the International Astronomical Union, 2011, 7, 159-166.	0.0	0
280	The most distant cosmological explosion. , 2011, , .		0
281	The future is now. Nature Reviews Physics, 2020, 2, 452-454.	26.6	0
282	Discovery of a 310 Day Period from the Enshrouded Massive System NaSt1 (WR 122). Astrophysical Journal, 2021, 922, 5.	4. 5	0
283	PGIR 20eid (SN2020qmp): A Type IIP Supernova at 15.6 Mpc discovered by the Palomar Gattini-IR survey. Astronomy and Astrophysics, 0, , .	5.1	0