Karen A Kidd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766
2	Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8897-8901.	3.3	1,669
3	Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 2013, 47, 13385-13394.	4.6	686
4	Trophic magnification factors: Considerations of ecology, ecosystems, and study design. Integrated Environmental Assessment and Management, 2012, 8, 64-84.	1.6	365
5	Applications, Considerations, and Sources of Uncertainty When Using Stable Isotope Analysis in Ecotoxicology. Environmental Science & amp; Technology, 2006, 40, 7501-7511.	4.6	308
6	The Impact of Endocrine Disruption: A Consensus Statement on the State of the Science. Environmental Health Perspectives, 2013, 121, A104-6.	2.8	267
7	Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 2018, 47, 170-197.	2.8	244
8	Global changeâ€driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change Biology, 2018, 24, 3692-3714.	4.2	229
9	Biomagnification of DDT through the Benthic and Pelagic Food Webs of Lake Malawi, East Africa:Â Importance of Trophic Level and Carbon Source. Environmental Science & Technology, 2001, 35, 14-20.	4.6	177
10	Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review. Science of the Total Environment, 1999, 230, 145-207.	3.9	160
11	High Concentrations of Toxaphene in Fishes from a Subarctic Lake. Science, 1995, 269, 240-242.	6.0	157
12	Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130578.	1.8	145
13	Mercury Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes. Environmental Science & Technology, 2013, 47, 12047-12053.	4.6	134
14	Perfluorinated and Polyfluorinated Compounds in Lake Food Webs from the Canadian High Arctic. Environmental Science & Technology, 2015, 49, 2694-2702.	4.6	134
15	Trophic Magnification of Organic Chemicals: A Global Synthesis. Environmental Science & Technology, 2016, 50, 4650-4658.	4.6	132
16	Effects of trophic position and lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon Territory. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 869-881.	0.7	107
17	A path forward in the debate over health impacts of endocrine disrupting chemicals. Environmental Health, 2014, 13, 118.	1.7	107
18	Mercury Concentrations in the Food Web of Lake Malawi, East Africa. Journal of Great Lakes Research, 2003, 29, 258-266.	0.8	99

#	Article	IF	CITATIONS
19	Prioritizing contaminants of emerging concern for ecological screening assessments. Environmental Toxicology and Chemistry, 2011, 30, 2385-2394.	2.2	97
20	Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Science of the Total Environment, 2012, 438, 135-143.	3.9	96
21	A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environmental Health, 2016, 15, 74.	1.7	92
22	How do aquatic communities respond to contaminants? It depends on the ecological context. Environmental Toxicology and Chemistry, 2012, 31, 1932-1940.	2.2	91
23	Persistent Chlorinated Pesticides in Air, Water, and Precipitation from the Lake Malawi Area, Southern Africa. Environmental Science & Technology, 2000, 34, 4490-4495.	4.6	84
24	Influence of lake characteristics on the biomagnification of persistent organic pollutants in lake trout food webs. Environmental Toxicology and Chemistry, 2008, 27, 2169-2178.	2.2	82
25	Induction of Vitellogenin and Histological Effects in Wild Fathead Minnows from a Lake Experimentally Treated with the Synthetic Estrogen, Ethynylestradiol. Water Quality Research Journal of Canada, 2002, 37, 637-650.	1.2	80
26	Interspecies differences in biochemical, histopathological, and population responses in four wild fish species exposed to ethynylestradiol added to a whole lakeThis paper is part of the series "Forty Years of Aquatic Research at the Experimental Lakes Areaâ€. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1920-1935.	0.7	76
27	Mercury biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1532-1545.	0.7	70
28	Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquatic Toxicology, 2013, 132-133, 46-52.	1.9	67
29	Effects of northern pike (<i>Esox lucius</i>) additions on pollutant accumulation and food web structure, as determined by δ ¹³ C and δ ¹⁵ N , in a eutrophic and an oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 2193-2202.	0.7	66
30	Organochlorine transfer in the food web of subalpine Bow Lake, Banff National Park. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1258-1269.	0.7	64
31	Science and policy on endocrine disrupters must not be mixed: a reply to a "common sense― intervention by toxicology journal editors. Environmental Health, 2013, 12, 69.	1.7	64
32	Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation. Ecological Applications, 2012, 22, 843-855.	1.8	63
33	Mercury Concentrations in Arctic Food Fishes Reflect the Presence of Anadromous Arctic Charr (<i>Salvelinus alpinus</i>), Species, and Life History. Environmental Science & Technology, 2010, 44, 3286-3292.	4.6	61
34	Anadromy in Arctic populations of lake trout <i>(Salvelinus namaycush)</i> : otolith microchemistry, stable isotopes, and comparisons with Arctic char (<i>Salvelinus alpinus</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 842-853.	0.7	61
35	Manufacturing doubt about endocrine disrupter science – A rebuttal of industry-sponsored critical comments on the UNEP/WHO report "State of the Science of Endocrine Disrupting Chemicals 2012― Regulatory Toxicology and Pharmacology, 2015, 73, 1007-1017.	1.3	57
36	BIOCHEMICAL AND HISTOPATHOLOGICAL EFFECTS IN PEARL DACE (MARGARISCUS MARGARITA) CHRONICALLY EXPOSED TO A SYNTHETIC ESTROGEN IN A WHOLE LAKE EXPERIMENT. Environmental Toxicology and Chemistry, 2006, 25, 1114.	2.2	53

#	Article	IF	CITATIONS
37	EFFECTS OF THE SYNTHETIC ESTROGEN ETHINYLESTRADIOL ON EARLY LIFE STAGES OF MINK FROGS AND GREEN FROGS IN THE WILD AND IN SITU. Environmental Toxicology and Chemistry, 2005, 24, 2027.	2.2	50
38	Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Science of the Total Environment, 2015, 509-510, 195-205.	3.9	49
39	UNDERSTANDING AND OVERCOMING BASELINE ISOTOPIC VARIABILITY IN RUNNING WATERS. River Research and Applications, 2014, 30, 155-165.	0.7	47
40	Increasing Mercury in Yellow Perch at a Hotspot in Atlantic Canada, Kejimkujik National Park. Environmental Science & Technology, 2010, 44, 9176-9181.	4.6	46
41	Metabarcoding of storage ethanol vs. conventional morphometric identification in relation to the use of stream macroinvertebrates as ecological indicators in forest management. Ecological Indicators, 2019, 101, 173-184.	2.6	46
42	Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem. Science of the Total Environment, 2015, 509-510, 206-215.	3.9	45
43	Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system. Journal of Proteomics, 2017, 157, 71-82.	1.2	43
44	Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquatic Toxicology, 2003, 62, 321-328.	1.9	42
45	Practical advice for selecting or determining trophic magnification factors for application under the European Union Water Framework Directive. Integrated Environmental Assessment and Management, 2019, 15, 266-277.	1.6	42
46	Recovery of a Wild Fish Population from Whole-Lake Additions of a Synthetic Estrogen. Environmental Science & Technology, 2015, 49, 3136-3144.	4.6	41
47	CONCENTRATIONS OF ORGANOCHLORINE PESTICIDES AND POLYCHLORINATED BIPHENYLS IN AMPHIPODS (GAMMARUS LACUSTRIS) ALONG AN ELEVATION GRADIENT IN MOUNTAIN LAKES OF WESTERN CANADA. Environmental Toxicology and Chemistry, 2003, 22, 2605.	2.2	38
48	Comparison of mercury concentrations in landlocked, resident, and seaâ€run fish (<i>Salvelinus</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
49	Evidence of impaired health in yellow perch (<i>Perca flavescens</i>) from a biological mercury hotspot in northeastern north America. Environmental Toxicology and Chemistry, 2013, 32, 627-637.	2.2	35
50	Municipal wastewater effluent affects fish communities: A multi-year study involving two wastewater treatment plants. Environmental Pollution, 2019, 252, 1730-1741.	3.7	35
51	Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Canada. Ecotoxicology, 2014, 23, 273-284.	1.1	34
52	An evaluation of deuterium as a food source tracer in temperate streams of eastern Canada. Journal of the North American Benthological Society, 2009, 28, 885-893.	3.0	32
53	Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. Environmental Toxicology and Chemistry, 2018, 37, 690-702.	2.2	31
54	Toxicity of two pyrethroid-based anti-sea lice pesticides, AlphaMax® and Excis®, to a marine amphipod in aqueous and sediment exposures. Aquaculture, 2014, 434, 233-240.	1.7	28

#	Article	IF	CITATIONS
55	Truncated foodweb effects of omnivorous minnows in a recovering acidified lake. Journal of the North American Benthological Society, 2001, 20, 629-642.	3.0	27
56	Quantifying importance of marine prey in the diets of two partially anadromous fishes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 2020-2028.	0.7	27
57	Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere, 2021, 262, 128360.	4.2	27
58	Effects of Partially Anadromous Arctic Charr (Salvelinus alpinus) Populations on Ecology of Coastal Arctic Lakes. Ecosystems, 2010, 13, 261-274.	1.6	25
59	Feeding response in marine copepods as a measure of acute toxicity of four anti-sea lice pesticides. Marine Environmental Research, 2014, 101, 145-152.	1.1	25
60	The direct and indirect effects of a glyphosateâ€based herbicide and nutrients on Chironomidae (Diptera) emerging from small wetlands. Environmental Toxicology and Chemistry, 2014, 33, 2076-2085.	2.2	25
61	Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity. Ecological Applications, 2019, 29, e01889.	1.8	25
62	Assimilation of freshwater salmonid aquaculture waste by native aquatic biotaThis paper is part of the series "Forty Years of Aquatic Research at the Experimental Lakes Areaâ€. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1965-1975.	0.7	24
63	The combined influence of two agricultural contaminants on natural communities of phytoplankton and zooplankton. Ecotoxicology, 2016, 25, 1021-1032.	1.1	24
64	Trophic transfer of cadmium in marine food webs from Western Chilean Patagonia and Antarctica. Marine Pollution Bulletin, 2018, 137, 246-251.	2.3	24
65	Mercury and Other Contaminants in Fish from Lake Chad, Africa. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 249-56.	1.3	23
66	Linking stream ecosystem integrity to catchment and reach conditions in an intensively managed forest landscape. Ecosphere, 2018, 9, e02278.	1.0	23
67	Assessing Trends in Organochlorine Concentrations in Lake Winnipeg Fish Following the 1997 Red River Flood. Journal of Great Lakes Research, 2003, 29, 332-354.	0.8	22
68	Municipal wastewater as an ecological trap: Effects on fish communities across seasons. Science of the Total Environment, 2021, 759, 143430.	3.9	22
69	Part B: Morphometric and transcriptomic responses to sub-chronic exposure to the polycyclic aromatic hydrocarbon phenanthrene in the fathead minnow (Pimephales promelas). Aquatic Toxicology, 2018, 199, 77-89.	1.9	21
70	Ecological Legacy of DDT Archived in Lake Sediments from Eastern Canada. Environmental Science & Technology, 2019, 53, 7316-7325.	4.6	21
71	Altered distribution of lipidâ€soluble antioxidant vitamins in juvenile sturgeon exposed to waterborne ethynylestradiol. Environmental Toxicology and Chemistry, 2001, 20, 2370-2376.	2.2	20
72	Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary. Journal of Environmental Sciences, 2018, 68, 41-54.	3.2	19

#	Article	IF	CITATIONS
73	Rainbow darter (Etheostoma caeruleum) from a river impacted by municipal wastewater effluents have altered gut content microbiomes. Science of the Total Environment, 2021, 751, 141724.	3.9	19
74	Biomagnification of Tantalum through Diverse Aquatic Food Webs. Environmental Science and Technology Letters, 2018, 5, 196-201.	3.9	18
75	Industrial innovation and infrastructure as drivers of change in the Canadian boreal zone ¹ . Environmental Reviews, 2019, 27, 275-294.	2.1	18
76	Food web structure within an estuary of the southern Gulf of St. Lawrence undergoing eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1805-1812.	0.7	17
77	Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant. Science of the Total Environment, 2019, 649, 770-791.	3.9	16
78	Reproductive health of yellow perch (Perca flavescens) from a biological mercury hotspot in Nova Scotia, Canada. Science of the Total Environment, 2013, 454-455, 319-327.	3.9	15
79	Part A: Temporal and dose-dependent transcriptional responses in the liver of fathead minnows following short term exposure to the polycyclic aromatic hydrocarbon phenanthrene. Aquatic Toxicology, 2018, 199, 90-102.	1.9	15
80	Concentration and Trophic Transfer of Copper, Selenium, and Zinc in Marine Species of the Chilean Patagonia and the Antarctic Peninsula Area. Biological Trace Element Research, 2020, 197, 285-293.	1.9	15
81	A sediment bioassay to assess the effects of aquaculture waste on growth, reproduction, and survival of Sphaerium simile (Say) (Bivalvia: Sphaeriidae). Aquaculture, 2007, 266, 144-152.	1.7	14
82	An elemental and stable isotope assessment of water strider feeding ecology and lipid dynamics: synthesis of laboratory and field studies. Freshwater Biology, 2008, 53, 2192-2205.	1.2	14
83	Bioaccumulation data from laboratory and field studies: Are they comparable?. Integrated Environmental Assessment and Management, 2012, 8, 13-16.	1.6	14
84	Science and management of transboundary lakes: Lessons learned from the global environment facility program. Environmental Development, 2013, 7, 17-31.	1.8	14
85	A Comparison of Mercury Biomagnification through Lacustrine Food Webs Supporting Brook Trout (Salvelinus fontinalis) and Other Salmonid Fishes. Frontiers in Environmental Science, 2016, 4, .	1.5	14
86	Bioaccumulation and biomagnification of potentially toxic elements in the octopus Octopus hubbsorum from the Gulf of California. Marine Pollution Bulletin, 2018, 129, 458-468.	2.3	14
87	Chronic Embryo‣arval Exposure of Fathead Minnows to the Pharmaceutical Drug Metformin: Survival, Growth, and Microbiome Responses. Environmental Toxicology and Chemistry, 2022, 41, 635-647.	2.2	14
88	Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs. Environmental Toxicology and Chemistry, 2017, 36, 661-670.	2.2	13
89	FACTORS AFFECTING WATER STRIDER (HEMIPTERA: GERRIDAE) MERCURY CONCENTRATIONS IN LOTIC SYSTEMS. Environmental Toxicology and Chemistry, 2009, 28, 1480.	2.2	12
90	Low concentrations of selenium in stream food webs of eastern Canada. Science of the Total Environment, 2011, 409, 785-791.	3.9	12

#	Article	IF	CITATIONS
91	Morphological alterations in the liver of yellow perch (Perca flavescens) from a biological mercury hotspot. Environmental Science and Pollution Research, 2015, 22, 17330-17342.	2.7	12
92	Fishes as indicators of untreated sewage contamination in a Mexican coastal lagoon. Marine Pollution Bulletin, 2016, 113, 100-109.	2.3	12
93	Tissue content of thiol-containing amino acids predicts methylmercury in aquatic invertebrates. Science of the Total Environment, 2019, 688, 567-573.	3.9	12
94	Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory. Science of the Total Environment, 2013, 443, 80-92.	3.9	11
95	Forest management influences the effects of streamside wet areas on stream ecosystems. Ecological Applications, 2020, 30, e02077.	1.8	11
96	Forest management impacts on stream integrity at varying intensities and spatial scales: Do abiotic effects accumulate spatially?. Science of the Total Environment, 2021, 753, 141968.	3.9	11
97	Persistence, bioaccumulation and vertical transfer of pollutants in long-finned pilot whales stranded in Chilean Patagonia. Science of the Total Environment, 2021, 770, 145259.	3.9	11
98	Comparing responses in the performance of sentinel populations of stoneflies (Plecoptera) and slimy sculpin (Cottus cognatus) exposed to enriching effluents. Ecotoxicology and Environmental Safety, 2011, 74, 1844-1854.	2.9	10
99	The toxicity of the anti-sea lice pesticide AlphaMax® to the polychaete worm Nereis virens. Aquaculture, 2014, 430, 98-106.	1.7	10
100	Understanding the Chronic Impacts of Oil Refinery Wastewater Requires Consideration of Sediment Contributions to Toxicity. Archives of Environmental Contamination and Toxicology, 2014, 66, 19-31.	2.1	10
101	The pesticide dieldrin disrupts proteins related to oxidative respiration and mitochondrial stress in the central nervous system. Data in Brief, 2017, 11, 628-633.	0.5	10
102	Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 192, 50-58.	1.3	10
103	General and histological indicators of health in wild fishes from a biological mercury hotspot in northeastern North America. Environmental Toxicology and Chemistry, 2017, 36, 976-987.	2.2	9
104	Project house water: a novel interdisciplinary framework to assess the environmental and socioeconomic consequences of flood-related impacts. Environmental Sciences Europe, 2017, 29, 23.	2.6	9
105	Quantification of sulphur amino acids by ultra-high performance liquid chromatography in aquatic invertebrates. Analytical Biochemistry, 2017, 539, 158-161.	1.1	9
106	Amino acids in freshwater food webs: Assessing their variability among taxa, trophic levels, and systems. Freshwater Biology, 2020, 65, 1101-1113.	1.2	9
107	Incorporation of wastes by native species during and after an experimental aquaculture operation. Freshwater Science, 2017, 36, 387-401.	0.9	8
108	Parasitic Castration of Chocolate Clam <i>Megapitaria squalida</i> (Sowerby, 1835) Caused by Trematode Larvae. Journal of Shellfish Research, 2017, 36, 593-599.	0.3	8

Karen A Kidd

#	Article	IF	CITATIONS
109	Short-Term Effects of the Anti-sea Lice Therapeutant Emamectin Benzoate on Clam Worms (Nereis) Tj ETQq1	1 0.784314 2.1	rgBT /Overlo
110	Evaluation of a performic acid oxidation method for quantifying amino acids in freshwater species. Limnology and Oceanography: Methods, 2018, 16, 803-813.	1.0	8
111	Prevalence and Intensity of <i>Salmincola edwardsii</i> in Brook Trout in Northwest New Brunswick, Canada. Journal of Aquatic Animal Health, 2020, 32, 11-20.	0.6	8
112	Compensatory indirect effects of an herbicide on wetland communities. Science of the Total Environment, 2020, 718, 137254.	3.9	8
113	Forest management impacts on stream integrity at varying intensities and spatial scales: Do biological effects accumulate spatially?. Science of the Total Environment, 2021, 763, 144043.	3.9	8
114	Reproductive fitness of lake trout (Salvelinus namaycush) exposed to environmentally relevant concentrations of the potent estrogen ethynylestradiol (EE2) in a whole lake exposure experiment. Scientia Marina, 2006, 70, 59-66.	0.3	8
115	Increased Mercury and Body Size and Changes in Trophic Structure of Gambusia puncticulata (Poeciliidae) Along the Almendares River, Cuba. Archives of Environmental Contamination and Toxicology, 2012, 63, 523-533.	2.1	7
116	Is There a Risk to Humans from Consuming Octopus Species from Sites with High Environmental Levels of Metals?. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 796-802.	1.3	7
117	Contrasting reproductive health of female clams Megapitaria squalida from two nearby metal-polluted sites in the Gulf of California: Potential effects of copper, lead, and cobalt. Marine Pollution Bulletin, 2020, 160, 111583.	2.3	7
118	Impacts of wastewater treatment plants on benthic macroinvertebrate communities in summer and winter. Science of the Total Environment, 2022, 820, 153224.	3.9	7
119	The gut content microbiome of wild-caught rainbow darter is altered during laboratory acclimation. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 39, 100835.	0.4	6
120	Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. Science of the Total Environment, 2022, 809, 151156.	3.9	6
121	Comparative Effects of Embryonic Metformin Exposure on Wild and Laboratory-Spawned Fathead Minnow (<i>Pimephales promelas</i>) Populations. Environmental Science & Technology, 2022, 56, 10193-10203.	4.6	6
122	Bridging the knowledge gaps on the sources, speciation, fate and bioaccumulation of mercury in aquatic and terrestrial environments. Environmental Pollution, 2008, 154, 1-2.	3.7	5
123	Use of the Atlantic nut clam (Nucula proxima) and catworm (Nephtys incisa) in a sentinel species approach for monitoring the health of Bay of Fundy estuaries. Marine Pollution Bulletin, 2016, 106, 225-235.	2.3	5
124	Polycyclic aromatic hydrocarbons (PAHs) in mussels (Modiolus capax) from sites with increasing anthropogenic impact in La Paz Bay, Gulf of California. Regional Studies in Marine Science, 2020, 33, 100948.	0.4	5
125	The effects of taxonomy, diet, and ecology on the microbiota of riverine macroinvertebrates. Ecology and Evolution, 2020, 10, 14000-14019.	0.8	5
126	Elevated Allochthony in Stream Food Webs as a Result of Longitudinal Cumulative Effects of Forest Management. Ecosystems, 0, , 1.	1.6	5

Karen A Kidd

#	Article	IF	CITATIONS
127	From the Editor's Desk, Editor's Highlights, Letters to the Editor. Toxicological Sciences, 2016, 149, 271-274.	1.4	4
128	Effects of Whole‣ake Additions of Ethynylestradiol on Leech Populations. Environmental Toxicology and Chemistry, 2020, 39, 1608-1619.	2.2	4
129	Evidence of health impairment of Megapitaria squalida (Bivalvia: Veneridae) near the "hot spot―of a mining port, Gulf of California. Hidrobiologica, 2017, 27, 391-398.	0.1	4
130	Response to Comment on "Mercury Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes― Environmental Science & Technology, 2014, 48, 10526-10527.	4.6	3
131	Assessing the utility of sulfur isotope values for understanding mercury concentrations in water and biota from high Arctic lakes. Arctic Science, 2019, 5, 90-106.	0.9	3
132	Mercury Elevator in Lakes: A Novel Vector of Methylmercury Transfer to Fish via Migratory Invertebrates. Environmental Science and Technology Letters, 2020, 7, 579-584.	3.9	3
133	Trophodynamics of trace elements in marine organisms from cold and remote regions of southern hemisphere. Environmental Research, 2022, 206, 112421.	3.7	3
134	Mercury in fish from African lakes. Natural Resources Forum, 2005, 29, 177-178.	1.8	2
135	ALTERED DISTRIBUTION OF LIPID-SOLUBLE ANTIOXIDANT VITAMINS IN JUVENILE STURGEON EXPOSED TO WATERBORNE ETHYNYLESTRADIOL. Environmental Toxicology and Chemistry, 2001, 20, 2370.	2.2	2
136	Swimming in Sewage: Indicators of Faecal Waste on Fish in the Saint John Harbour, New Brunswick. Water Quality Research Journal of Canada, 2008, 43, 283-290.	1.2	2
137	Mercury concentrations and stable isotopes (δ15N and δ13C) in fish muscle indicate human impacts in tropical coastal lagoons. Marine Pollution Bulletin, 2022, 176, 113454.	2.3	2
138	Are There Longitudinal Effects of Forest Harvesting on Carbon Quality and Flow and Methylmercury Bioaccumulation in Primary Consumers of Temperate Stream Networks?. Environmental Toxicology and Chemistry, 2022, , .	2.2	2
139	Age, body size, growth and dietary habits: What are the key factors driving individual variability in mercury of lacustrine fishes in northern temperate lakes?. Environmental Research, 2022, 213, 113740.	3.7	2
140	Sturgeons Are Biodiversity Priorities Needing Special Protection from Chemicals and Waste. Environmental Science & Technology, 2022, 56, 9847-9850.	4.6	2
141	Effects of municipal wastewater effluents on the digestive gland microbiome of wild freshwater mussels (Lasmigona costata). Ecotoxicology and Environmental Safety, 2022, 241, 113774.	2.9	2
142	Regional and Longâ€Term Analyses of Stable Isotopes of Fish and Invertebrates Show Evidence of the Closure of a Pulp Mill and the Influence of Additional Stressors. Environmental Toxicology and Chemistry, 2020, 39, 1207-1218.	2.2	1
143	David W. Schindler—Icon and Iconoclast. Limnology and Oceanography Bulletin, 2021, 30, 76-80.	0.2	1
144	Behavioral and hypothalamic transcriptome analyses reveal sex-specific responses to phenanthrene exposure in the fathead minnow (Pimephales promelas). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 40, 100905.	0.4	1

#	Article	IF	CITATIONS
145	A comparative assessment of molecular biological and direct microscopic techniques for assessing aquatic systems. Environmental Monitoring and Assessment, 2008, 145, 465-473.	1.3	ο
146	<i>In Response</i> : Environmental and biological considerations for active pharmaceutical ingredients in the environment and their effects across multiple biological scales: An academic perspective. Environmental Toxicology and Chemistry, 2015, 34, 461-463.	2.2	0
147	Changes in the condition, early growth, and trophic position of lake trout (Salvelinus namaycush) in response to an experimental aquaculture operation. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1376-1387.	0.7	Ο
148	David W. Schindler (1940–2021): Trailblazing scientist and advocate for the environment. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2106365118.	3.3	0
149	Food web incorporation of marine-derived nutrients after the reintroduction of endangered inner Bay of Fundy Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 0, , .	0.7	Ο
150	TEMPORARY REMOVAL: PCB exposure is associated with reduction of endosymbionts in riparian spider microbiomes. Science of the Total Environment, 2022, , 156726.	3.9	0