
Jonathan Belmaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EltonTraits 1.0: Speciesâ€level foraging attributes of the world's birds and mammals. Ecology, 2014, 95, 2027-2027.	1.5	1,212
2	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
3	The global biogeography of polyploid plants. Nature Ecology and Evolution, 2019, 3, 265-273.	3.4	208
4	Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 2012, 27, 600-607.	4.2	188
5	Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters, 2015, 18, 563-571.	3.0	128
6	Cross-scale variation in species richness-environment associations. Global Ecology and Biogeography, 2011, 20, 464-474.	2.7	123
7	Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecology Letters, 2015, 18, 246-253.	3.0	121
8	ls oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?. Global Ecology and Biogeography, 2019, 28, 64-77.	2.7	115
9	Biologists ignore ocean weather at their peril. Nature, 2018, 560, 299-301.	13.7	104
10	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
11	Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.	1.9	92
12	Large but uneven reduction in fish size across species in relation to changing sea temperatures. Global Change Biology, 2017, 23, 3667-3674.	4.2	86
13	Upgrading Marine Ecosystem Restoration Using Ecologicalâ€ S ocial Concepts. BioScience, 2016, 66, 156-163.	2.2	85
14	Global patterns of specialization and coexistence in bird assemblages. Journal of Biogeography, 2012, 39, 193-203.	1.4	80
15	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	4.2	79
16	Global mismatch between species richness and vulnerability of reef fish assemblages. Ecology Letters, 2014, 17, 1101-1110.	3.0	78
17	Empirical evidence for the scale dependence of biotic interactions. Global Ecology and Biogeography, 2015, 24, 750-761.	2.7	67
18	Ecological traits and environmental affinity explain <scp>R</scp> ed <scp>S</scp> ea fish introduction into the <scp>M</scp> editerranean. Global Change Biology, 2013, 19, 1373-1382.	4.2	66

#	Article	IF	CITATIONS
19	Downscaling of species distribution models: †a hierarchical approach. Methods in Ecology and Evolution, 2013, 4, 82-94.	2.2	63
20	The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps. Frontiers in Marine Science, 2020, 7, .	1.2	62
21	Thermal affinity as the dominant factor changing Mediterranean fish abundances. Global Change Biology, 2018, 24, e80-e89.	4.2	58
22	Are we ready to track climateâ€driven shifts in marine species across international boundaries? ―A global survey of scientific bottom trawl data. Global Change Biology, 2021, 27, 220-236.	4.2	51
23	Regional Pools and Environmental Controls of Vertebrate Richness. American Naturalist, 2012, 179, 512-523.	1.0	49
24	Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography, 2020, 43, 1090-1106.	2.1	49
25	Spatial Scaling of Functional Structure in Bird and Mammal Assemblages. American Naturalist, 2013, 181, 464-478.	1.0	47
26	Patterns of species richness, endemism and environmental gradients of African reptiles. Journal of Biogeography, 2016, 43, 2380-2390.	1.4	42
27	REGIONAL VARIATION IN THE HIERARCHICAL PARTITIONING OF DIVERSITY IN CORAL-DWELLING FISHES. Ecology, 2008, 89, 2829-2840.	1.5	41
28	Lag times in Lessepsian fish invasion. Biological Invasions, 2016, 18, 2761-2772.	1.2	41
29	Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biology, 2020, 18, e3000935.	2.6	41
30	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	2.7	40
31	Expanding marine protected areas to include degraded coral reefs. Conservation Biology, 2016, 30, 1182-1191.	2.4	39
32	Species richness of resident and transient coralâ€dwelling fish responds differentially to regional diversity. Global Ecology and Biogeography, 2009, 18, 426-436.	2.7	37
33	Estimating the rate of biological introductions: Lessepsian fishes in the Mediterranean. Ecology, 2009, 90, 1134-1141.	1.5	31
34	The Interplay Between Landscape Structure and Biotic Interactions. Current Landscape Ecology Reports, 2017, 2, 12-29.	1.1	30
35	Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evolutionary Applications, 2018, 11, 1437-1447.	1.5	30
36	Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions. PLoS ONE, 2018, 13, e0194650.	1.1	29

#	Article	IF	CITATIONS
37	Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos, 2017, 126, 1451-1458.	1.2	28
38	Trait structure reveals the processes underlying fish establishment in the Mediterranean. Global Ecology and Biogeography, 2017, 26, 142-153.	2.7	28
39	A meta-analysis reveals edge effects within marine protected areas. Nature Ecology and Evolution, 2021, 5, 1301-1308.	3.4	27
40	Effects of small-scale isolation and predation on fish diversity on experimental reefs. Marine Ecology - Progress Series, 2005, 289, 273-283.	0.9	27
41	Amongâ€species overlap in rodent body size distributions predicts species richness along a temperature gradient. Ecography, 2018, 41, 1718-1727.	2.1	25
42	Niche breadth and species richness: Correlation strength, scale and mechanisms. Global Ecology and Biogeography, 2020, 29, 159-170.	2.7	25
43	Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 2020, 57, 578-589.	1.9	25
44	Nonâ€stationarity in the coâ€occurrence patterns of species across environmental gradients. Journal of Ecology, 2017, 105, 391-399.	1.9	24
45	Habitat utilization by an invasive herbivorous fish (Siganus rivulatus) in its native and invaded range. Biological Invasions, 2018, 20, 3499-3512.	1.2	24
46	Shifts in Eastern Mediterranean Fish Communities: Abundance Changes, Trait Overlap, and Possible Competition between Native and Non-Native Species. Fishes, 2018, 3, 19.	0.7	24
47	Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla). Oecologia, 2008, 156, 21-30.	0.9	22
48	The Eurasian hot nightlife: Environmental forces associated with nocturnality in lizards. Global Ecology and Biogeography, 2017, 26, 1316-1325.	2.7	22
49	Determinants of the steep species–area relationship of coral reef fishes. Coral Reefs, 2007, 26, 103-112.	0.9	21
50	The global biogeography of lizard functional groups. Journal of Biogeography, 2019, 46, 2147-2158.	1.4	21
51	Coldâ€water species deepen to escape warm water temperatures. Global Ecology and Biogeography, 2022, 31, 75-88.	2.7	21
52	The influence of connectivity on richness and temporal variation of reef fishes. Landscape Ecology, 2011, 26, 587-597.	1.9	19
53	The impact of long-term continuous risk of predation on two species of gerbils. Canadian Journal of Zoology, 2004, 82, 464-474.	0.4	18
54	Reduced human activity in shallow reefs during the COVID-19 pandemic increases fish evenness. Biological Conservation, 2021, 257, 109103.	1.9	18

#	Article	IF	CITATIONS
55	Nonâ€indigenous molluscs in the Eastern Mediterranean have distinct traits and cannot replace historic ecosystem functioning. Global Ecology and Biogeography, 2022, 31, 89-102.	2.7	18
56	The determinants of species richness of a relatively young coral-reef ichthyofauna. Journal of Biogeography, 2006, 33, 1289-1294.	1.4	16
57	Decreases in length at maturation of Mediterranean fishes associated with higher sea temperatures. ICES Journal of Marine Science, 2019, 76, 946-959.	1.2	16
58	Alien species stabilize local fisheries catch in a highly invaded ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 752-761.	0.7	16
59	Habitat patchiness and predation modify the distribution of a coral-dwelling damselfish. Marine Biology, 2009, 156, 447-454.	0.7	15
60	Tropical bird species have less variable body sizes. Biology Letters, 2018, 14, 20170453.	1.0	15
61	A closer examination of the â€~abundant centre' hypothesis for reef fishes. Journal of Biogeography, 2020, 47, 2194-2209.	1.4	15
62	SPECIES DIVERSITY CAN DRIVE SPECIATION: COMMENT. Ecology, 2007, 88, 2132-2135.	1.5	14
63	Global reef fish richness gradients emerge from divergent and scale-dependent component changes. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170947.	1.2	14
64	Coastal breeding aggregations of threatened stingrays and guitarfish in the Levant. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1160-1171.	0.9	14
65	Habitat niche breadth predicts invasiveness in solitary ascidians. Ecology and Evolution, 2017, 7, 7838-7847.	0.8	12
66	Remarkable size-spectra stability in a marine system undergoing massive invasion. Biology Letters, 2017, 13, 20170159.	1.0	12
67	Catch dynamics of set net fisheries in Israel. Fisheries Research, 2019, 213, 1-11.	0.9	10
68	<scp>P</scp> alaeocene– <scp>E</scp> ocene evolution of beta diversity among ungulate mammals in <scp>N</scp> orth <scp>A</scp> merica. Global Ecology and Biogeography, 2014, 23, 757-768.	2.7	9
69	Comparison of wormlions and their immediate habitat under man-made and natural shelters: suggesting factors making wormlions successful in cities. Zoology, 2018, 130, 38-46.	0.6	8
70	Ecological pleiotropy and indirect effects alter the potential for evolutionary rescue. Evolutionary Applications, 2019, 12, 636-654.	1.5	8
71	A review of seascape complexity indices and their performance in coral and rocky reefs. Methods in Ecology and Evolution, 2021, 12, 681-695.	2.2	7
72	Native-exotic diversity relationships for Eastern Mediterranean fishes reveal a weak pattern of interactions. Marine Ecology - Progress Series, 2019, 611, 215-220.	0.9	7

#	Article	IF	CITATIONS
73	Specialization and the road to academic success. Frontiers in Ecology and the Environment, 2010, 8, 514-515.	1.9	6
74	Predation Cues Lead to Reduced Foraging of Invasive Siganus rivulatus in the Mediterranean. Frontiers in Marine Science, 2021, 8, .	1.2	5
75	Synthesizing drivers of fish functional responses across species. Fish and Fisheries, 2022, 23, 376-391.	2.7	5
76	Estimating ecological count-based measures from the point-intercept method. Marine Ecology - Progress Series, 2016, 556, 123-130.	0.9	5
77	Highly repetitive space-use dynamics in parrotfishes. Coral Reefs, 2022, 41, 1059-1073.	0.9	5
78	An invasive herbivorous fish (Siganus rivulatus) influences both benthic and planktonic microbes through defecation and nutrient excretion. Science of the Total Environment, 2022, 838, 156207.	3.9	5
79	Shift and homogenization of gut microbiome during invasion in marine fishes. Animal Microbiome, 2022, 4, .	1.5	5
80	Large Individual-Level Variability in Diel Activity and Depth Use for the Common Lionfish (Pterois) Tj ETQq0 0 0 rg	BT_/Overlo	ock 10 Tf 50 4

81	Geographic divergence in the relationship between Paragobiodon echinocephalus and its obligate coral host. Journal of Fish Biology, 2007, 71, 1555-1561.	0.7	2
82	Potential Pitfalls in the Definition of Lessepsian Migrants: The Case of Brachidontes. , 2021, , 1293-1307.		2
83	opinion: Habitat data resolution and the detection of species interactions. Frontiers of Biogeography, 2012, 2, .	0.8	0

Little spatial and temporal segregation between coexisting lionfishes (Pterois miles and Pterois) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 30 0.2 cm)