Ping Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085323/publications.pdf Version: 2024-02-01

PINC 7HAO

#	Article	IF	CITATIONS
1	Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori. BMC Genomics, 2010, 11, 405.	2.8	84
2	Comparative Proteomics Reveal Diverse Functions and Dynamic Changes of <i>Bombyx mori</i> Silk Proteins Spun from Different Development Stages. Journal of Proteome Research, 2013, 12, 5213-5222.	3.7	75
3	Structural and Mechanical Properties of Silk from Different Instars of <i>Bombyx mori</i> . Biomacromolecules, 2019, 20, 1203-1216.	5.4	58
4	Fabrication of the FGF1-functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk. Acta Biomaterialia, 2018, 79, 239-252.	8.3	46
5	Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation. Biomacromolecules, 2015, 16, 3119-3125.	5.4	44
6	Identification and Characterization of Novel Chitin-Binding Proteins from the Larval Cuticle of Silkworm, <i>Bombyx mori</i> . Journal of Proteome Research, 2016, 15, 1435-1445.	3.7	44
7	In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 567-576.	2.4	44
8	Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application. Acta Biomaterialia, 2014, 10, 4947-4955.	8.3	42
9	Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori. Scientific Reports, 2016, 6, 21158.	3.3	36
10	Shotgun proteomic analysis of the <i>Bombyx mori</i> anterior silk gland: An insight into the biosynthetic fiber spinning process. Proteomics, 2013, 13, 2657-2663.	2.2	30
11	Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 2021, 121, 180-192.	8.3	29
12	Large-scale production of bioactive recombinant human acidic fibroblast growth factor in transgenic silkworm cocoons. Scientific Reports, 2015, 5, 16323.	3.3	27
13	Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomaterialia, 2022, 144, 81-95.	8.3	27
14	Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenic differentiation. Biomaterials Science, 2020, 8, 657-672.	5.4	23
15	Serine protease P-IIc is responsible for the digestion of yolk proteins at the late stage of silkworm embryogenesis. Insect Biochemistry and Molecular Biology, 2016, 74, 42-49.	2.7	18
16	Comparative Fecal Metabolomes of Silkworms Being Fed Mulberry Leaf and Artificial Diet. Insects, 2020, 11, 851.	2.2	18
17	Proteomics Provides Insight into the Interaction between Mulberry and Silkworm. Journal of Proteome Research, 2017, 16, 2472-2480.	3.7	16
18	Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1148-1156.	2.4	15

Ping Zhao

#	Article	IF	CITATIONS
19	A silkworm based silk gland bioreactor for high-efficiency production of recombinant human lactoferrin with antibacterial and anti-inflammatory activities. Journal of Biological Engineering, 2019, 13, 61.	4.7	13
20	Ultrafine and High-Strength Silk Fibers Secreted by Bimolter Silkworms. Polymers, 2020, 12, 2537.	4.5	13
21	Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophinâ€Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of <i>Bombyx mori</i> at the Molting Stage. Proteomics, 2018, 18, e1700389.	2.2	12
22	Genetic fabrication of functional silk mats with improved cell proliferation activity for medical applications. Biomaterials Science, 2019, 7, 4536-4546.	5.4	12
23	Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS Applied Materials & Interfaces, 2021, 13, 45175-45190.	8.0	12
24	Deep Insight into the Transcriptome of the Single Silk Gland of Bombyx mori. International Journal of Molecular Sciences, 2019, 20, 2491.	4.1	11
25	Chitin and cuticle proteins form the cuticular layer in the spinning duct of silkworm. Acta Biomaterialia, 2022, 145, 260-271.	8.3	11
26	Inhibition of silkworm vacuolarâ€ŧype ATPase activity by its inhibitor Bafilomycin A1 induces caspaseâ€dependent apoptosis in an embryonic cell line of silkworm. Archives of Insect Biochemistry and Physiology, 2018, 99, e21507.	1.5	7
27	Fibroinase and its physiological inhibitors involved in the regulation of silk gland development in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2019, 106, 19-27.	2.7	6
28	Fiber Formation and Mechanical Properties of <i>Bombyx mori</i> Silk Are Regulated by Vacuolar-Type ATPase. ACS Biomaterials Science and Engineering, 2021, 7, 5532-5540.	5.2	4