Bo Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085271/publications.pdf Version: 2024-02-01

BOLIANC

#	Article	IF	CITATIONS
1	Cryo-Electron Microscopy Structures of the <i>Pneumoviridae</i> Polymerases. Viral Immunology, 2021, 34, 18-26.	0.6	3
2	Efficient purification and assembly of ribonucleoprotein complex for interaction analysis by MST assay coupled with GaMD simulations. STAR Protocols, 2021, 2, 100315.	0.5	2
3	Baicalein and Baicalin Inhibit SARS-CoV-2 RNA-Dependent-RNA Polymerase. Microorganisms, 2021, 9, 893.	1.6	80
4	Structural Insights into the Respiratory Syncytial Virus RNA Synthesis Complexes. Viruses, 2021, 13, 834.	1.5	15
5	Generation and Assembly of Virus-Specific Nucleocapsids of the Respiratory Syncytial Virus. Journal of Visualized Experiments, 2021, , .	0.2	0
6	Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorganic and Medicinal Chemistry, 2021, 45, 116324.	1.4	8
7	<i>In vitro</i> trackable assembly of RNA-specific nucleocapsids of the respiratory syncytial virus. Journal of Biological Chemistry, 2020, 295, 883-895.	1.6	9
8	Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Cell Reports, 2020, 30, 53-60.e5.	2.9	51
9	<i>In Vitro</i> Primer-Based RNA Elongation and Promoter Fine Mapping of the Respiratory Syncytial Virus. Journal of Virology, 2020, 95, .	1.5	9
10	Repurposing Nucleoside Analogs for Human Coronaviruses. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	45
11	Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure, 2020, 28, 979-990.e4.	1.6	15
12	Structures of the <i>Mononegavirales</i> Polymerases. Journal of Virology, 2020, 94, .	1.5	28
13	Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Nature Communications, 2020, 11, 368.	5.8	61
14	In vitro trackable assembly of RNA-specific nucleocapsids of the respiratory syncytial virus. Journal of Biological Chemistry, 2020, 295, 883-895.	1.6	8
15	A conserved histidine in Group-1 influenza subtype hemagglutinin proteins is essential for membrane fusion activity. Virology, 2019, 536, 78-90.	1.1	11
16	Cryo-EM structure of TRPC5 at 2.8-Ã resolution reveals unique and conserved structural elements essential for channel function. Science Advances, 2019, 5, eaaw7935.	4.7	69
17	Activation of the Hemagglutinin of Influenza Viruses. , 2018, , 3-26.		3
18	An <i>In Vitro</i> RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity. Journal of Virology, 2017, 91, .	1.5	30

Bo Liang

#	Article	IF	CITATIONS
19	Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Science Signaling, 2016, 9, ra77.	1.6	46
20	Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia. Frontiers in Cellular Neuroscience, 2015, 9, 386.	1.8	86
21	Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy. Cell, 2015, 162, 314-327.	13.5	211
22	Genetically encoded impairment of neuronal <scp>KCC</scp> 2 cotransporter function in human idiopathic generalized epilepsy. EMBO Reports, 2014, 15, 766-774.	2.0	163
23	Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2. Trends in Neurosciences, 2013, 36, 726-737.	4.2	196
24	Critical phosphoprotein elements that regulate polymerase architecture and function in vesicular stomatitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14628-14633.	3.3	57
25	Structures of ribonucleoprotein particle modification enzymes. Quarterly Reviews of Biophysics, 2011, 44, 95-122.	2.4	20
26	Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide. Rna, 2011, 17, 244-250.	1.6	13
27	Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20075-20080.	3.3	91
28	Functional and Structural Impact of Target Uridine Substitutions on the H/ACA Ribonucleoprotein Particle Pseudouridine Synthase,. Biochemistry, 2010, 49, 6276-6281.	1.2	19
29	Glycosidic Bond Conformation Preference Plays a Pivotal Role in Catalysis of RNA Pseudouridylation: A Combined Simulation and Structural Study. Journal of Molecular Biology, 2010, 401, 690-695.	2.0	11
30	Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nature Structural and Molecular Biology, 2009, 16, 740-746.	3.6	77
31	Long-distance placement of substrate RNA by H/ACA proteins. Rna, 2008, 14, 2086-2094.	1.6	22
32	Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nature Structural and Molecular Biology, 2007, 14, 1189-1195.	3.6	57
33	Crystal Structure of a Cbf5-Nop10-Gar1 Complex and Implications in RNA-Guided Pseudouridylation and Dyskeratosis Congenita. Molecular Cell, 2006, 21, 249-260.	4.5	152