Xiang-Jie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5085204/publications.pdf

Version: 2024-02-01

XIANC-LE WANC

#	Article	IF	CITATIONS
1	Research progress of microstructure control for aluminium solidification process. Science Bulletin, 2013, 58, 468-473.	1.7	11
2	Influence of Deep Cryogenic Treatment on Microstructure and Properties of 7A99 Ultra-High Strength Aluminum Alloy. Metals, 2019, 9, 631.	2.3	10
3	Microstructures and properties of 6016 aluminum alloy with gradient composition. Rare Metals, 2021, 40, 2154-2159.	7.1	10
4	Effect of trace element vanadium on superplasticity of 5083 aluminium alloy sheets. Science China Technological Sciences, 2012, 55, 510-514.	4.0	9
5	A new approach for preparing SiC particle-reinforced aluminum matrix composites by applying electromagnetic field. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 717-721.	1.0	8
6	A crystallographic study on the growth of Laves phase MgZn2 during the solidification process of Zn–Mg alloy under a high magnetic field. Journal of Materials Science, 2018, 53, 15181-15195.	3.7	8
7	Low Frequency Electromagnetic Casting of 2195 Aluminum–Lithium Alloy and Its Effects on Microstructure and Mechanical Properties. Acta Metallurgica Sinica (English Letters), 2020, 33, 338-350.	2.9	8
8	Effects of low-frequency electromagnetic field on the surface quality of 7050 aluminum alloy ingots during the hot-top casting process. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 165-168.	4.9	6
9	Micro-Structure and Mechanical Properties of 2A97 Al-Li Alloy Cast by Low-Frequency Electromagnetic Casting. Metals, 2019, 9, 822.	2.3	6
10	Influence of a high magnetic field on the solidification structures of ternary Al–Fe–Zr alloy. Journal of Materials Research, 2017, 32, 2035-2044.	2.6	5
11	Morphological and Crystallographic Characterization of Primary Zinc-Rich Crystals in a Ternary Sn-Zn-Bi Alloy under a High Magnetic Field. Crystals, 2017, 7, 204.	2.2	5
12	Effect of Low-Frequency Electromagnetic Casting on Micro-Structure and Macro-Segregation of 5A90 Alloy Ingots. Materials, 2020, 13, 2720.	2.9	5
13	Effect of a High Magnetic Field on Crystal Growth in the Solidification of Hypoperitectic Zn–Ag Alloy. Crystal Growth and Design, 2019, 19, 6448-6462.	3.0	4
14	A Crystallographic Study on the Growth of Partially Faceted MnSn2 Phase during Solidification Process. Crystals, 2018, 8, 380.	2.2	3
15	The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy. International Journal of Materials Research, 2010, 101, 380-385.	0.3	2
16	Experimental investigation of the start-up phase during direct chill and low frequency electromagnetic casting of 6063 aluminum alloy processes. Heat and Mass Transfer, 2010, 46, 657-664.	2.1	2
17	Magnetic and Magnetocaloric Properties in the Non-stoichiometric Fe2+xTa1-x (x = 0–0.25) Alloys. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1547-1554.	1.8	1
18	Effects of Gradient Hot Rolled Deformation on Texture Evolution and Properties of 1561 Aluminum Alloy. Crystals, 2022, 12, 229.	2.2	0

#	Article	IF	CITATIONS
19	Effects of low-frequency electromagnetic field on the surface quality of 7050 aluminum alloy ingots during the hot-top casting process. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 165-168.	4.9	0