
Gang-Feng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/508497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps. International Journal of Mechanical Sciences, 2021, 191, 106069.	6.7	50
2	Meso-modelling study of the mechanical response and texture evolution of magnesium alloy during hot compression. Materials Today Communications, 2021, 27, 102469.	1.9	3
3	Manufacturing of Ni-based superalloy thin-walled components by complex strain-path spinning combined with solution heat treatment. International Journal of Advanced Manufacturing Technology, 2021, 117, 199-215.	3.0	1
4	Deformation mechanism of ZK61 magnesium alloy cylindrical parts with longitudinal inner ribs during hot backward flow forming. Journal of Materials Processing Technology, 2021, 296, 117197.	6.3	22
5	Study of the microstructures and mechanical properties of ZK61 magnesium alloy cylindrical parts with inner ribs formed by hot power spinning. International Journal of Advanced Manufacturing Technology, 2020, 111, 851-860.	3.0	22
6	Research on the microstructure evolution of Ni-based superalloy cylindrical parts during hot power spinning. Advances in Manufacturing, 2019, 7, 52-63.	6.1	14
7	Research on Formation Conditions of the Ultrafine-Grained Structure of the Cylindrical Parts Manufactured by Power Spinning Based on Small Strains. Materials, 2018, 11, 1891.	2.9	2
8	Research on the forming quality and mechanical properties of cylindrical spun parts with ultrafine-grained structure during power spinning. International Journal of Advanced Manufacturing Technology, 2018, 97, 2979-2986.	3.0	5
9	Research on precise control of microstructure and mechanical properties of Ni-based superalloy cylindrical parts during hot backward flow spinning. Journal of Manufacturing Processes, 2018, 34, 140-147.	5.9	28
10	A study on non-uniform deformation of backward flow forming and its influencing factors. International Journal of Advanced Manufacturing Technology, 2017, 93, 4143-4152.	3.0	11
11	The classification and a review of hot power spinning of difficult-to-deform metals. International Journal of Materials and Product Technology, 2017, 54, 212.	0.2	13
12	New forming method of manufacturing cylindrical parts with nano/ultrafine grained structures by power spinning based on small plastic strains. Science China Technological Sciences, 2016, 59, 1656-1665.	4.0	18
13	Research on the grain refinement method of cylindrical parts by power spinning. International Journal of Advanced Manufacturing Technology, 2015, 78, 971-979.	3.0	18
14	A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning. Materials & Design, 2014, 59, 516-523.	5.1	32
15	A review of process advancement of novel metal spinning. International Journal of Machine Tools and Manufacture, 2014, 85, 100-121.	13.4	147